Department of Biomedical Engineering, Ammon Pinizzotto Biopharmaceutical Innovations Center, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA.
Department of Biomedical Engineering, Ammon Pinizzotto Biopharmaceutical Innovations Center, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA; Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA.
Acta Biomater. 2022 Sep 15;150:138-153. doi: 10.1016/j.actbio.2022.07.039. Epub 2022 Jul 28.
Growth factor therapy has demonstrated great promise for chronic wound repair, but controlling growth factor activity and cell phenotype over desired time frames remains a critical challenge. In this study, we developed a gene-activated hyaluronic acid-collagen matrix (GAHCM) comprising DNA/polyethylenimine (PEI) polyplexes retained on hyaluronic acid (HA)-collagen hydrogels using collagen mimetic peptides (CMPs). We hypothesized that manipulating both the number of CMP-collagen tethers and the ECM composition would provide a powerful strategy to control growth factor gene transfer kinetics while regulating cell behavior, resulting in enhanced growth factor activity for wound repair. We observed that polyplexes with 50% CMP-modified PEI (50 CP) showed enhanced retention of polyplexes in HCM hydrogels by 2.7-fold as compared to non-CMP modified polyplexes. Moreover, the incorporation of HA in the hydrogel promoted a significant increase in gene transfection efficiency based upon analysis of Gaussia luciferase (GLuc) reporter gene expression, and gene expression could be attenuated by blocking HA-CD44 signaling. Furthermore, when fibroblasts were exposed to vascular endothelial growth factor-A (VEGF-A)-GAHCM, the 50 CP matrix facilitated sustained VEGF-A production for up to 7 days, with maximal expression at day 5. Application of these VEGF-A-50 CP samples stimulated prolonged pro-healing responses, including the TGF-β1-induced myofibroblast-like phenotypes and enhanced closure of murine splinted wounds. Overall, these findings demonstrate the use of ECM-based materials to stimulate efficient gene transfer and regulate cellular phenotype, resulting in improved control of growth factor activity for wound repair. GAHCM has significant potential to overcome key challenges in growth factor therapy for regenerative medicine. STATEMENT OF SIGNIFICANCE: Despite great promise for growth factor therapies in wound treatment, controlling growth factor activity and providing a microenvironment for cells that maximizes growth factor signaling have continued to limit the success of existing formulations. Our GAHCM strategy, combining CMP gene delivery and a hyaluronic acid-collagen matrix, enabled enhanced wound healing efficacy via the combination of controlled and localized growth factor expression and matrix-mediated regulation of cell behavior. Incorporation of CMPs and HA in the same matrix synergistically enhanced VEGF activity as compared with simpler matrices. Accordingly, GAHCM will advance our ability to leverage growth factor signaling for wound healing, resulting in new long-term treatments for recalcitrant wounds.
生长因子疗法在慢性伤口修复方面显示出巨大的潜力,但控制生长因子活性和细胞表型在所需的时间范围内仍然是一个关键挑战。在这项研究中,我们开发了一种基因激活的透明质酸-胶原基质(GAHCM),它由通过胶原模拟肽(CMP)保留在透明质酸(HA)-胶原水凝胶上的 DNA/聚乙烯亚胺(PEI)聚集体组成。我们假设,通过操纵 CMP-胶原系链的数量和细胞外基质组成,将为控制生长因子基因转移动力学提供一种强大的策略,同时调节细胞行为,从而提高生长因子对伤口修复的活性。我们观察到,与非 CMP 修饰的聚集体相比,具有 50% CMP 修饰的 PEI(50CP)的聚集体在 HCM 水凝胶中的保留率提高了 2.7 倍。此外,水凝胶中 HA 的掺入基于对高斯荧光素酶(GLuc)报告基因表达的分析,显著提高了基因转染效率,并且可以通过阻断 HA-CD44 信号来减弱基因表达。此外,当成纤维细胞暴露于血管内皮生长因子-A(VEGF-A)-GAHCM 时,50CP 基质促进 VEGF-A 的持续产生长达 7 天,在第 5 天达到最大表达。应用这些 VEGF-A-50CP 样本刺激了延长的促愈合反应,包括 TGF-β1 诱导的成肌纤维细胞样表型和增强的小鼠带线伤口闭合。总的来说,这些发现表明使用基于细胞外基质的材料来刺激有效的基因转移和调节细胞表型,从而改善对伤口修复的生长因子活性的控制。GAHCM 具有克服再生医学中生长因子治疗的关键挑战的巨大潜力。
尽管生长因子疗法在伤口治疗方面具有巨大的潜力,但控制生长因子活性并为细胞提供最大化生长因子信号的微环境仍然限制了现有制剂的成功。我们的 GAHCM 策略,结合 CMP 基因传递和透明质酸-胶原基质,通过控制和局部表达生长因子以及基质介导的调节细胞行为,实现了增强的伤口愈合功效。与更简单的基质相比,CMP 和 HA 同时在同一基质中的掺入协同增强了 VEGF 的活性。因此,GAHCM 将提高我们利用生长因子信号进行伤口愈合的能力,从而为难治性伤口提供新的长期治疗方法。