Suppr超能文献

用于CO稳定电化学还原的疏水性梯度气体扩散层

Hydrophobicity Graded Gas Diffusion Layer for Stable Electrochemical Reduction of CO.

作者信息

Li Linbo, Chen Jun, Mosali Venkata Sai Sriram, Liang Yan, Bond Alan M, Gu Qinfen, Zhang Jie

机构信息

ARC Centre of Excellence for Electromaterials Science, School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia.

ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia.

出版信息

Angew Chem Int Ed Engl. 2022 Sep 26;61(39):e202208534. doi: 10.1002/anie.202208534. Epub 2022 Aug 23.

Abstract

To mitigate flooding associated with the gas diffusion layer (GDL) during electroreduction of CO , we report a hydrophobicity-graded hydrophobic GDL (HGGDL). Coating uniformly dispersed polytetrafluoroethylene (PTFE) binders on the carbon fiber skeleton of a hydrophilic GDL uniformizes the hydrophobicity of the GDL and also alleviates the gas blockage of pore channels. Further adherence of the PTFE macroporous layer (PMPL) to one side of the hydrophobic carbon fiber skeleton was aided by sintering. The introduced PMPL shows an appropriate pore size and enhanced hydrophobicity. As a result, the HGGDL offers spatial control of the hydrophobicity and hence water and gas transport over the GDL. Using a nickel-single-atom catalyst, the resulting HGGDL electrode provided a CO faradaic efficiency of over 83 % at a constant current density of 75 mA cm for 103 h operation in a membrane electrode assembly, which is more than 16 times that achieved with a commercial GDL.

摘要

为了减轻二氧化碳电还原过程中与气体扩散层(GDL)相关的水淹问题,我们报道了一种具有疏水性梯度的疏水气体扩散层(HGGDL)。在亲水性GDL的碳纤维骨架上均匀涂覆分散的聚四氟乙烯(PTFE)粘合剂,可使GDL的疏水性均匀化,并减轻孔道的气体堵塞。通过烧结,PTFE大孔层(PMPL)进一步附着在疏水碳纤维骨架的一侧。引入的PMPL具有合适的孔径并增强了疏水性。因此,HGGDL实现了对疏水性的空间控制,从而实现了水和气体在GDL上的传输。使用镍单原子催化剂,所得的HGGDL电极在膜电极组件中以75 mA cm的恒定电流密度运行103 h时,提供了超过83%的CO法拉第效率,这是使用商业GDL所实现效率的16倍以上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54d1/9804220/7b9ab55f43ca/ANIE-61-0-g002.jpg

相似文献

1
Hydrophobicity Graded Gas Diffusion Layer for Stable Electrochemical Reduction of CO.
Angew Chem Int Ed Engl. 2022 Sep 26;61(39):e202208534. doi: 10.1002/anie.202208534. Epub 2022 Aug 23.
2
Optimizing the hydrophobicity of GDL to improve the fuel cell performance.
RSC Adv. 2021 Jan 7;11(4):2010-2019. doi: 10.1039/d0ra09658j. eCollection 2021 Jan 6.
4
Surface coating combined with in situ cyclic voltammetry to enhance the stability of gas diffusion electrodes for electrochemical CO reduction.
Sci Total Environ. 2024 Mar 25;918:170758. doi: 10.1016/j.scitotenv.2024.170758. Epub 2024 Feb 6.
5
High performance gas diffusion layer with hydrophobic nanolayer under a supersaturated operation condition for fuel cells.
ACS Appl Mater Interfaces. 2015 Mar 11;7(9):5506-13. doi: 10.1021/acsami.5b00088. Epub 2015 Mar 2.
6
Nonconductive Metal Oxide Gas Diffusion Layer for Mitigating Electrowetting during CO Electrolysis.
ACS Appl Mater Interfaces. 2024 Jun 5;16(22):28731-28741. doi: 10.1021/acsami.4c05467. Epub 2024 May 23.
7
Hydrophobic Electrode Design for CO Electroreduction in a Microchannel Reactor.
ACS Appl Mater Interfaces. 2022 Feb 16;14(6):8623-8632. doi: 10.1021/acsami.1c23744. Epub 2022 Feb 2.
8
Effects of Electrode Support Structure on Electrode Microstructure, Transport Properties, and Gas Diffusion within the Gas Diffusion Layer.
ACS Omega. 2022 Aug 16;7(34):29832-29839. doi: 10.1021/acsomega.2c02669. eCollection 2022 Aug 30.
9
Engineering the NiNC Catalyst Microenvironment Enabling CO Electroreduction with Nearly 100% CO Selectivity in Acid.
Adv Mater. 2022 Sep;34(38):e2201295. doi: 10.1002/adma.202201295. Epub 2022 Aug 19.

引用本文的文献

1
Tuning the microenvironment of immobilized molecular catalysts for selective electrochemical CO reduction.
Chem Sci. 2025 Feb 26;16(14):5872-5879. doi: 10.1039/d4sc08219b. eCollection 2025 Apr 2.
2
Species mass transfer governs the selectivity of gas diffusion electrodes toward HO electrosynthesis.
Nat Commun. 2024 Dec 5;15(1):10632. doi: 10.1038/s41467-024-55091-3.
3
Comprehensive Analysis of Wettability in Waterproofed Gas Diffusion Layers for Polymer Electrolyte Fuel Cells.
ACS Appl Mater Interfaces. 2024 Jul 17;16(28):36489-36497. doi: 10.1021/acsami.4c07867. Epub 2024 Jul 4.
4
Pure-Water-Fed Forward-Bias Bipolar Membrane CO Electrolyzer.
ACS Appl Mater Interfaces. 2024 May 15;16(19):24649-24659. doi: 10.1021/acsami.4c02799. Epub 2024 May 6.
5
Rational Design of Metal-Organic Frameworks for Electroreduction of CO to Hydrocarbons and Carbon Oxygenates.
ACS Cent Sci. 2022 Nov 23;8(11):1506-1517. doi: 10.1021/acscentsci.2c01083. Epub 2022 Oct 25.

本文引用的文献

1
Cation-Driven Increases of CO Utilization in a Bipolar Membrane Electrode Assembly for CO Electrolysis.
ACS Energy Lett. 2021 Dec 10;6(12):4291-4298. doi: 10.1021/acsenergylett.1c02058. Epub 2021 Nov 11.
2
The Gas Diffusion Electrode Setup as Straightforward Testing Device for Proton Exchange Membrane Water Electrolyzer Catalysts.
JACS Au. 2021 Feb 17;1(3):247-251. doi: 10.1021/jacsau.1c00015. eCollection 2021 Mar 22.
3
Architectural Design for Enhanced C Product Selectivity in Electrochemical CO Reduction Using Cu-Based Catalysts: A Review.
ACS Nano. 2021 May 25;15(5):7975-8000. doi: 10.1021/acsnano.0c10697. Epub 2021 May 6.
4
Optimizing Active Sites for High CO Selectivity during CO Hydrogenation over Supported Nickel Catalysts.
J Am Chem Soc. 2021 Mar 24;143(11):4268-4280. doi: 10.1021/jacs.0c12689. Epub 2021 Mar 4.
6
Platinum Dissolution in Realistic Fuel Cell Catalyst Layers.
Angew Chem Int Ed Engl. 2021 Apr 12;60(16):8882-8888. doi: 10.1002/anie.202014711. Epub 2021 Mar 9.
7
Heterogeneous Single-Atom Catalysts for Electrochemical CO Reduction Reaction.
Adv Mater. 2020 Aug;32(34):e2001848. doi: 10.1002/adma.202001848. Epub 2020 Jul 9.
8
Efficient wettability-controlled electroreduction of CO to CO at Au/C interfaces.
Nat Commun. 2020 Jun 15;11(1):3028. doi: 10.1038/s41467-020-16847-9.
9
Accelerated discovery of CO electrocatalysts using active machine learning.
Nature. 2020 May;581(7807):178-183. doi: 10.1038/s41586-020-2242-8. Epub 2020 May 13.
10
Strategies in catalysts and electrolyzer design for electrochemical CO reduction toward C products.
Sci Adv. 2020 Feb 21;6(8):eaay3111. doi: 10.1126/sciadv.aay3111. eCollection 2020 Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验