Bermúdez-López Marcelino, Martí-Antonio Manuel, Castro-Boqué Eva, Bretones María Del Mar, Farràs Cristina, Torres Gerard, Pamplona Reinald, Lecube Albert, Mauricio Dídac, Valdivielso José Manuel, Fernández Elvira
Grupo de Investigación Translacional Vascular y Renal, IRBLleida, Red de Investigación Renal (RedInRen-ISCIII), Lleida, Spain.
Centre d'Atenció Primària Cappont, Gerència Territorial de Lleida, Institut Català de la Salut, Barcelona, Spain.
Front Cardiovasc Med. 2022 Jul 14;9:895917. doi: 10.3389/fcvm.2022.895917. eCollection 2022.
Although European guidelines recommend vascular ultrasound for the assessment of cardiovascular risk in low-to-moderate risk individuals, no algorithm properly identifies patients who could benefit from it. The aim of this study is to develop a sex-specific algorithm to identify those patients, especially women who are usually underdiagnosed.
Clinical, anthropometrical, and biochemical data were combined with a 12-territory vascular ultrasound to predict severe atheromatosis (SA: ≥ 3 territories with plaque). A Personalized Algorithm for Severe Atheromatosis Prediction (PASAP-ILERVAS) was obtained by machine learning. Models were trained in the ILERVAS cohort ( = 8,330; 51% women) and validated in the control subpopulation of the NEFRONA cohort ( = 559; 47% women). Performance was compared to the Systematic COronary Risk Evaluation (SCORE) model.
The PASAP-ILERVAS is a sex-specific, easy-to-interpret predictive model that stratifies individuals according to their risk of SA in low, intermediate, or high risk. New clinical predictors beyond traditional factors were uncovered. In low- and high-risk (L&H-risk) men, the net reclassification index (NRI) was 0.044 (95% CI: 0.020-0.068), and the integrated discrimination index (IDI) was 0.038 (95% CI: 0.029-0.048) compared to the SCORE. In L&H-risk women, PASAP-ILERVAS showed a significant increase in the area under the curve (AUC, 0.074 (95% CI: 0.062-0.087), -value: < 0.001), an NRI of 0.193 (95% CI: 0.162-0.224), and an IDI of 0.119 (95% CI: 0.109-0.129).
The PASAP-ILERVAS improves SA prediction, especially in women. Thus, it could reduce the number of unnecessary complementary explorations selecting patients for a further imaging study within the intermediate risk group, increasing cost-effectiveness and optimizing health resources.
[www.ClinicalTrials.gov], identifier [NCT03228459].
尽管欧洲指南推荐使用血管超声评估低至中度风险个体的心血管风险,但尚无算法能够准确识别可从中受益的患者。本研究的目的是开发一种针对性别的算法,以识别这些患者,尤其是那些通常未被充分诊断的女性患者。
将临床、人体测量和生化数据与12个区域的血管超声检查相结合,以预测严重动脉粥样硬化(SA:≥3个区域有斑块)。通过机器学习获得了严重动脉粥样硬化预测个性化算法(PASAP-ILERVAS)。模型在ILERVAS队列(n = 8330;51%为女性)中进行训练,并在NEFRONA队列的对照亚组(n = 559;47%为女性)中进行验证。将其性能与系统性冠状动脉风险评估(SCORE)模型进行比较。
PASAP-ILERVAS是一种针对性别的、易于解释的预测模型,可根据个体患SA的风险将其分为低、中或高风险。发现了传统因素之外的新临床预测指标。与SCORE模型相比,在低风险和高风险(L&H风险)男性中,净重新分类指数(NRI)为0.044(95%CI:0.020 - 0.068),综合鉴别指数(IDI)为0.038(95%CI:0.029 - 0.048)。在L&H风险女性中,PASAP-ILERVAS的曲线下面积(AUC)显著增加(0.074,95%CI:0.062 - 0.087,P值:<0.001),NRI为0.193(95%CI:0.162 - 0.224),IDI为0.119(95%CI:0.109 - 0.129)。
PASAP-ILERVAS改善了SA的预测,尤其是在女性中。因此,它可以减少不必要的辅助检查数量,在中度风险组中选择患者进行进一步的影像学研究,提高成本效益并优化卫生资源。