Huang Huei-Chung, Wu Yilin, Yang Qihang, Qin Li-Xuan
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
Front Genet. 2022 Jul 22;13:838679. doi: 10.3389/fgene.2022.838679. eCollection 2022.
We present a new R package for assessing the performance of data normalization methods in connection with methods for sample classification. It includes two microRNA microarray datasets for the same set of tumor samples: a re-sampling-based algorithm for simulating additional paired datasets under various designs of sample-to-array assignment and levels of signal-to-noise ratios and a collection of numerical and graphical tools for method performance assessment. The package allows users to specify their own methods for normalization and classification, in addition to implementing three methods for training data normalization, seven methods for test data normalization, seven methods for classifier training, and two methods for classifier validation. It enables an objective and systemic evaluation of the operating characteristics of normalization and classification methods in microRNA microarrays. To our knowledge, this is the first such tool available. The R package can be downloaded freely at https://github.com/LXQin/PRECISION.array.
我们展示了一个新的R包,用于评估与样本分类方法相关的数据归一化方法的性能。它包括针对同一组肿瘤样本的两个 microRNA 微阵列数据集:一种基于重采样的算法,用于在样本到阵列分配的各种设计和信噪比水平下模拟额外的配对数据集,以及一组用于方法性能评估的数值和图形工具。该包允许用户指定自己的归一化和分类方法,此外还实现了三种训练数据归一化方法、七种测试数据归一化方法、七种分类器训练方法和两种分类器验证方法。它能够对 microRNA 微阵列中归一化和分类方法的操作特性进行客观和系统的评估。据我们所知,这是首个可用的此类工具。该R包可在https://github.com/LXQin/PRECISION.array上免费下载。