IEEE Trans Med Imaging. 2022 Dec;41(12):3849-3861. doi: 10.1109/TMI.2022.3197400. Epub 2022 Dec 2.
Deep learning (DL)-based methods show great potential in computed tomography (CT) imaging field. The DL-based reconstruction methods are usually evaluated on the training and testing datasets which are obtained from the same distribution, i.e., the same CT scan protocol (i.e., the region setting, kVp, mAs, etc.). In this work, we focus on analyzing the robustness of the DL-based methods against protocol-specific distribution shifts (i.e., the training and testing datasets are from different region settings, different kVp settings, or different mAs settings, respectively). The results show that the DL-based reconstruction methods are sensitive to the protocol-specific perturbations which can be attributed to the noise distribution shift between the training and testing datasets. Based on these findings, we presented a low-dose CT reconstruction method using an unsupervised strategy with the consideration of noise distribution to address the issue of protocol-specific perturbations. Specifically, unpaired sinogram data is enrolled into the network training, which represents unique information for specific imaging protocol, and a Gaussian mixture model (GMM) is introduced to characterize the noise distribution in CT images. It can be termed as GMM based unsupervised CT reconstruction network (GMM-unNet) method. Moreover, an expectation-maximization algorithm is designed to optimize the presented GMM-unNet method. Extensive experiments are performed on three datasets from different scan protocols, which demonstrate that the presented GMM-unNet method outperforms the competing methods both qualitatively and quantitatively.
深度学习(DL)方法在计算机断层扫描(CT)成像领域显示出巨大的潜力。基于 DL 的重建方法通常在训练和测试数据集上进行评估,这些数据集来自相同的分布,即相同的 CT 扫描协议(即区域设置、kVp、mAs 等)。在这项工作中,我们专注于分析基于 DL 的方法对协议特定分布偏移的鲁棒性(即训练和测试数据集分别来自不同的区域设置、不同的 kVp 设置或不同的 mAs 设置)。结果表明,基于 DL 的重建方法对协议特定的扰动很敏感,这可以归因于训练和测试数据集之间的噪声分布偏移。基于这些发现,我们提出了一种使用无监督策略的低剂量 CT 重建方法,该方法考虑了噪声分布,以解决协议特定的扰动问题。具体来说,将未配对的正弦图数据纳入网络训练中,该数据代表特定成像协议的独特信息,并引入高斯混合模型(GMM)来描述 CT 图像中的噪声分布。它可以称为基于 GMM 的无监督 CT 重建网络(GMM-unNet)方法。此外,还设计了期望最大化算法来优化所提出的 GMM-unNet 方法。在来自不同扫描协议的三个数据集上进行了广泛的实验,结果表明,所提出的 GMM-unNet 方法在定性和定量方面都优于竞争方法。