Suppr超能文献

表面改性的染料敏化铌酸盐纳米片实现了用于整体水分解的高效太阳能驱动Z型体系。

Surface-modified, dye-sensitized niobate nanosheets enabling an efficient solar-driven Z-scheme for overall water splitting.

作者信息

Nishioka Shunta, Hojo Koya, Xiao Langqiu, Gao Tianyue, Miseki Yugo, Yasuda Shuhei, Yokoi Toshiyuki, Sayama Kazuhiro, Mallouk Thomas E, Maeda Kazuhiko

机构信息

Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

Department of Chemistry, University of Pennsylvania, 231 S. 34th Street Philadelphia, PA 19104, USA.

出版信息

Sci Adv. 2022 Aug 12;8(32):eadc9115. doi: 10.1126/sciadv.adc9115. Epub 2022 Aug 10.

Abstract

While dye-sensitized metal oxides are good candidates as H evolution photocatalysts for solar-driven Z-scheme water splitting, their solar-to-hydrogen (STH) energy conversion efficiencies remain low because of uncontrolled charge recombination reactions. Here, we show that modification of Ru dye-sensitized, Pt-intercalated HCaNbO nanosheets (/Pt/HCaNbO) with both amorphous AlO and poly(styrenesulfonate) (PSS) improves the STH efficiency of Z-scheme overall water splitting by a factor of ~100, when the nanosheets are used in combination with a WO-based O evolution photocatalyst and an I/I redox mediator, relative to an analogous system that uses unmodified /Pt/HCaNbO. By using the optimized photocatalyst, PSS//AlO/Pt/HCaNbO, a maximum STH of 0.12% and an apparent quantum yield of 4.1% at 420 nm were obtained, by far the highest among dye-sensitized water splitting systems and comparable to conventional semiconductor-based suspended particulate photocatalyst systems.

摘要

虽然染料敏化金属氧化物是用于太阳能驱动Z型水分解的析氢光催化剂的良好候选材料,但由于电荷复合反应不受控制,它们的太阳能到氢能(STH)能量转换效率仍然很低。在这里,我们表明,当纳米片与基于WO的析氧光催化剂和I/I氧化还原介质结合使用时,用非晶态AlO和聚(苯乙烯磺酸盐)(PSS)对Ru染料敏化、Pt插层的HCaNbO纳米片(/Pt/HCaNbO)进行改性,可将Z型全水分解的STH效率提高约100倍,相对于使用未改性的/Pt/HCaNbO的类似系统。通过使用优化的光催化剂PSS//AlO/Pt/HCaNbO,在420 nm处获得了0.12%的最大STH和4.1%的表观量子产率,这是染料敏化水分解系统中迄今为止最高的,与传统的基于半导体的悬浮颗粒光催化剂系统相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53ab/9365272/9ab903879945/sciadv.adc9115-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验