Suppr超能文献

层状卤化物基钙钛矿中动力学控制的结构转变:一种调节自旋分裂的方法。

Kinetically Controlled Structural Transitions in Layered Halide-Based Perovskites: An Approach to Modulate Spin Splitting.

作者信息

Xie Yi, Song Ruyi, Singh Akash, Jana Manoj K, Blum Volker, Mitzi David B

机构信息

Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.

University Program in Materials Science and Engineering, Duke University, Durham, North Carolina 27708, United States.

出版信息

J Am Chem Soc. 2022 Aug 24;144(33):15223-15235. doi: 10.1021/jacs.2c05574. Epub 2022 Aug 11.

Abstract

Two-dimensional hybrid organic-inorganic perovskite (HOIP) semiconductors with pronounced spin splitting, mediated by strong spin-orbit coupling and inversion symmetry breaking, offer the potential for spin manipulation in future spintronic applications. However, HOIPs exhibiting significant conduction/valence band splitting are still relatively rare, given the generally observed preference for (near)centrosymmetric inorganic (especially lead-iodide-based) sublattices, and few approaches are available to control this symmetry breaking within a given HOIP. Here, we demonstrate, using (S-2-MeBA)PbI (S-2-MeBA = (S)-(-)-2-methylbutylammonium) as an example, that a temperature-induced structural transition (at ∼180 K) serves to change the degree of chirality transfer to and inversion symmetry breaking within the inorganic layer, thereby enabling modulation of HOIP structural and electronic properties. The cooling rate is shown to dictate whether the structural transition occurs─i.e., slow cooling induces the transition while rapid quenching inhibits it. Ultrafast calorimetry indicates a minute-scale structural relaxation time at the transition temperature, while quenching to lower temperatures allows for effectively locking in the metastable room-temperature phase, thus enabling kinetic control over switching between distinct states with different degrees of structural distortions within the inorganic layers at these temperatures. Density functional theory further highlights that the low-temperature phase of (S-2-MeBA)PbI shows more significant spin splitting relative to the room-temperature phase. Our work opens a new pathway to use kinetic control of crystal-to-crystal transitions and thermal cycling to modulate spin splitting in HOIPs for future spintronic applications, and further points to using such "sluggish" phase transitions for switching and control over other physical phenomena, particularly those relying on structural distortions and lattice symmetry.

摘要

二维有机-无机杂化钙钛矿(HOIP)半导体具有显著的自旋分裂,这是由强自旋-轨道耦合和反演对称性破缺介导的,为未来自旋电子学应用中的自旋操纵提供了潜力。然而,鉴于通常观察到对(近)中心对称无机(特别是基于碘化铅的)亚晶格的偏好,表现出显著导带/价带分裂的HOIP仍然相对较少,并且在给定的HOIP中几乎没有可用的方法来控制这种对称性破缺。在这里,我们以(S-2-MeBA)PbI(S-2-MeBA = (S)-(-)-2-甲基丁基铵)为例进行说明,温度诱导的结构转变(在~180 K)用于改变无机层内手性转移的程度和反演对称性破缺,从而实现对HOIP结构和电子性质的调制。冷却速率被证明决定了结构转变是否发生,即缓慢冷却诱导转变,而快速淬火则抑制它。超快量热法表明在转变温度下存在分钟级别的结构弛豫时间,而淬火到较低温度允许有效地锁定亚稳态室温相,从而能够在这些温度下对无机层内具有不同程度结构畸变的不同状态之间的切换进行动力学控制。密度泛函理论进一步强调,(S-2-MeBA)PbI的低温相相对于室温相表现出更显著的自旋分裂。我们的工作开辟了一条新途径,利用晶体到晶体转变的动力学控制和热循环来调制HOIP中的自旋分裂,以用于未来的自旋电子学应用,并进一步指出利用这种“缓慢”的相变来切换和控制其他物理现象,特别是那些依赖于结构畸变和晶格对称性的现象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验