Suppr超能文献

深度学习和神经网络在舞蹈编排教学中的优化。

Optimization of Choreography Teaching with Deep Learning and Neural Networks.

机构信息

School of Music and Dance, Hunan Women's University, Changsha 410004, Hunan, China.

School of Music, South China Normal University, Guangzhou 510631, Guangdong, China.

出版信息

Comput Intell Neurosci. 2022 Jul 31;2022:7242637. doi: 10.1155/2022/7242637. eCollection 2022.

Abstract

To improve the development level of intelligent dance education and choreography network technology, the research mainly focuses on the automatic formation system of continuous choreography by using the deep learning method. Firstly, it overcomes the technical difficulty that the dynamic segmentation and process segmentation of the automatic generation architecture in traditional choreography cannot achieve global optimization. Secondly, it is an automatic generation architecture for end-to-end continuous dance notation with access to temporal classifiers. Based on this, a dynamic time-stamping model is designed for frame clustering. Finally, it is concluded through experiments that the model successfully achieves high-performance movement time-stamping. And combined with continuous motion recognition technology, it realizes the refined production of continuous choreography with global motion recognition and then marks motion duration. This research effectively realizes the efficient and refined production of digital continuous choreography, provides advanced technical means for choreography education, and provides useful experience for school network choreography education.

摘要

为提高智能舞蹈教育与编舞网络技术的发展水平,本研究主要专注于使用深度学习方法自动形成连续编舞系统。首先,它克服了传统编舞自动生成架构中动态分割和过程分割无法实现全局优化的技术难题。其次,它是一种具有时间分类器访问权限的端到端连续舞蹈符号自动生成架构。在此基础上,为帧聚类设计了一个动态时间戳模型。最后,通过实验得出结论,该模型成功实现了高性能的运动时间戳。并结合连续运动识别技术,实现了全局运动识别下的连续编舞精细化制作,然后标记运动持续时间。本研究有效实现了数字连续编舞的高效精细化制作,为编舞教育提供了先进的技术手段,为学校网络编舞教育提供了有益的经验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f77/9357785/4fde5ed1b43c/CIN2022-7242637.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验