Baspin Nouédyn, Krishna Anirudh
Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1.
Stanford University, Stanford, California 94305, USA.
Phys Rev Lett. 2022 Jul 29;129(5):050505. doi: 10.1103/PhysRevLett.129.050505.
Quantum low-density parity-check (LDPC) codes are a promising avenue to reduce the cost of constructing scalable quantum circuits. However, it is unclear how to implement these codes in practice. Seminal results of Bravyi et al. [Phys. Rev. Lett. 104, 050503 (2010)PRLTAO0031-900710.1103/PhysRevLett.104.050503] have shown that quantum LDPC codes implemented through local interactions obey restrictions on their dimension k and distance d. Here we address the complementary question of how many long-range interactions are required to implement a quantum LDPC code with parameters k and d. In particular, in 2D we show that a quantum LDPC code with distance d∝n^{1/2+ϵ} requires Ω(n^{1/2+ϵ}) interactions of length Ωover ˜. Further, a code satisfying k∝n with distance d∝n^{α} requires Ωover ˜ interactions of length Ωover ˜. As an application of these results, we consider a model called a stacked architecture, which has previously been considered as a potential way to implement quantum LDPC codes. In this model, although most interactions are local, a few of them are allowed to be very long. We prove that limited long-range connectivity implies quantitative bounds on the distance and code dimension.
量子低密度奇偶校验(LDPC)码是降低构建可扩展量子电路成本的一条有前景的途径。然而,目前尚不清楚如何在实践中实现这些码。Bravyi等人的开创性成果[《物理评论快报》104, 050503 (2010)PRLTAO0031 - 900710.1103/PhysRevLett.104.050503]表明,通过局部相互作用实现的量子LDPC码在其维度(k)和距离(d)上存在限制。在此,我们探讨一个互补问题:实现具有参数(k)和(d)的量子LDPC码需要多少长程相互作用。特别地,在二维情况下,我们表明距离(d∝n^{1/2 + ϵ})的量子LDPC码需要(Ω(n^{1/2 + ϵ}))个长度为(Ω\widetilde{)的相互作用。此外,一个满足(k∝n)且距离(d∝n^{α})的码需要(Ω\widetilde{)个长度为(Ω\widetilde{)的相互作用。作为这些结果的一个应用,我们考虑一个称为堆叠架构的模型,该模型此前被视为实现量子LDPC码的一种潜在方式。在这个模型中,尽管大多数相互作用是局部的,但允许其中一些相互作用非常长。我们证明有限的长程连通性意味着对距离和码维度的定量限制。