Suppr超能文献

在质体外膜中,抗生素的降解速度较慢,抗性基因的富集程度较高。

Slower antibiotics degradation and higher resistance genes enrichment in plastisphere.

机构信息

School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, China.

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

出版信息

Water Res. 2022 Aug 15;222:118920. doi: 10.1016/j.watres.2022.118920. Epub 2022 Aug 2.

Abstract

Microplastics (MPs) are increasingly entering the urban aquatic ecosystems, and the environmental significance and health risks of plastisphere, a special biofilm on MPs, have received widespread attention. In this study, MPs of polylactic acid (PLA) and polyvinyl chloride (PVC) and quartzite were incubated in an urban water environment, and the tetracycline (TC) degradation ability was compared. Approximatedly 24% of TC biodegraded in 28 d in the water-quartzite system, which is significantly higher than that in the water-PLA (17.3%) and water-PVC systems (16.7%). Re-incubation of microorganisms in biofilms affirmed that quartzite biofilm has a higher TC degradation capacity than the plastisphere. According to high-throughput sequencing of 16S rRNA and metagenomic analysis, quartzite biofilm contained more abundant potential TC degrading bacteria, genes related to TC degradation (eutG, aceE, and DLAT), and metabolic pathways related to TC degradation. An oligotrophic environment on the quartzite surface might lead to the higher metabolic capacity of quartzite biofilm for unconventional carbons, e.g., TC. It is also found that, compared with quartzite biofilm, the distinct microbes in the plastisphere carried more antibiotic resistance genes (ARGs). Higher affinity of MPs surface to antibiotics may lead to higher antibiotics stress on the plastisphere, which further amplify the carrying capacity for ARGs of microorganisms in the plastisphere. Compared to the nondegradable PVC MPs, surface of the biodegradable PLA plastics harbored significantly higher amounts of biomass and ARGs. Compared to the mineral particles, the capability of plastisphere has lower ability to degrade unconventional carbon sources such as the refractory organic pollutants, due to the abundance of carbon sources (adsorbed organic carbon and endogenous organic carbon) on the MPs surface. Meanwhile, the stronger adsorption capacity for pollutants also leads to higher pollutant stress (such as antibiotic stress) in plastisphere, which in turn affects the microbiological characteristics of the plastisphere itself, such as carrying more ARGs.

摘要

微塑料(MPs)越来越多地进入城市水生生态系统,其特殊生物膜——塑料体对环境的意义和健康风险受到广泛关注。本研究在城市水环境中孵育聚乳酸(PLA)和聚氯乙烯(PVC) MPs 和石英砂,比较了四环素(TC)的降解能力。在水-石英砂体系中,28 天内约有 24%的 TC 被生物降解,明显高于水-PLA(17.3%)和水-PVC(16.7%)体系。在生物膜中重新孵育微生物证实,石英砂生物膜具有更高的 TC 降解能力。根据 16S rRNA 和宏基因组分析的高通量测序,石英砂生物膜含有更丰富的潜在 TC 降解细菌、与 TC 降解相关的基因(eutG、aceE 和 DLAT)以及与 TC 降解相关的代谢途径。石英砂表面贫营养环境可能导致石英砂生物膜对非常规碳(如 TC)具有更高的代谢能力。研究还发现,与石英砂生物膜相比,塑料体中独特的微生物携带更多的抗生素抗性基因(ARGs)。 MPs 表面对抗生素的亲和力较高,可能导致塑料体受到更高的抗生素胁迫,从而进一步增加塑料体中微生物携带 ARGs 的能力。与不可生物降解的 PVC MPs 相比,可生物降解的 PLA 塑料表面具有更高的生物量和 ARGs。与矿物颗粒相比,由于 MPs 表面存在丰富的碳源(吸附有机碳和内源性有机碳),塑料体对非常规碳源(如难降解有机污染物)的降解能力较低。同时,对污染物更强的吸附能力也导致塑料体中更高的污染物胁迫(如抗生素胁迫),进而影响塑料体本身的微生物特征,如携带更多的 ARGs。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验