Suppr超能文献

基于微柱阵列的微流控芯片用于无标记分离循环肿瘤细胞:最佳微柱几何形状?

A micropillar array-based microfluidic chip for label-free separation of circulating tumor cells: The best micropillar geometry?

机构信息

Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.

Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.

出版信息

J Adv Res. 2023 May;47:105-121. doi: 10.1016/j.jare.2022.08.005. Epub 2022 Aug 11.

Abstract

INTRODUCTION

The information derived from the number and characteristics of circulating tumor cells (CTCs), is crucial to ensure appropriate cancer treatment monitoring. Currently, diverse microfluidic platforms have been developed for isolating CTCs from blood, but it remains a challenge to develop a low-cost, practical, and efficient strategy.

OBJECTIVES

This study aimed to isolate CTCs from the blood of cancer patients via introducing a new and efficient micropillar array-based microfluidic chip (MPA-Chip), as well as providing prognostic information and monitoring the treatment efficacy in cancer patients.

METHODS

We fabricated a microfluidic chip (MPA-Chip) containing arrays of micropillars with different geometries (lozenge, rectangle, circle, and triangle). We conducted numerical simulations to compare velocity and pressure profiles inside the micropillar arrays. Also, we experimentally evaluated the capture efficiency and purity of the geometries using breast and prostate cancer cell lines as well as a blood sample. Moreover, the device's performance was validated on 12 patients with breast cancer (BC) in different states.

RESULTS

The lozenge geometry was selected as the most effective and optimized micropillar design for CTCs isolation, providing high capture efficiency (>85 %), purity (>90 %), and viability (97 %). Furthermore, the lozenge MPA-chip was successfully validated by the detection of CTCs from 12 breast cancer (BC) patients, with non-metastatic (median number of 6 CTCs) and metastatic (median number of 25 CTCs) diseases, showing different prognoses. Also, increasing the chemotherapy period resulted in a decrease in the number of captured CTCs from 23 to 7 for the metastatic patient. The MPA-Chip size was only 0.25 cm and the throughput of a single chip was 0.5 ml/h, which can be increased by multiple MPA-Chips in parallel.

CONCLUSION

The lozenge MPA-Chip presented a novel micropillar geometry for on-chip CTC isolation, detection, and staining, and in the future, the possibilities can be extended to the culture of the CTCs.

摘要

简介

从循环肿瘤细胞(CTC)的数量和特征中获得的信息,对于确保适当的癌症治疗监测至关重要。目前,已经开发出多种用于从血液中分离 CTC 的微流控平台,但开发一种低成本、实用且高效的策略仍然是一个挑战。

目的

本研究旨在通过引入一种新的高效基于微柱阵列的微流控芯片(MPA-Chip),从癌症患者的血液中分离 CTC,并提供预后信息和监测癌症患者的治疗效果。

方法

我们制造了一种含有不同几何形状(菱形、矩形、圆形和三角形)微柱阵列的微流控芯片(MPA-Chip)。我们进行了数值模拟,以比较微柱阵列内部的速度和压力分布。此外,我们使用乳腺癌和前列腺癌细胞系以及血液样本实验评估了不同几何形状的捕获效率和纯度。此外,该设备的性能在 12 名不同状态的乳腺癌(BC)患者中得到了验证。

结果

菱形几何形状被选为用于 CTC 分离的最有效和优化的微柱设计,提供了高捕获效率(>85%)、高纯度(>90%)和高存活率(97%)。此外,菱形 MPA 芯片通过检测 12 名乳腺癌(BC)患者的 CTC 得到了成功验证,患有非转移性(中位数为 6 个 CTC)和转移性(中位数为 25 个 CTC)疾病,显示出不同的预后。此外,随着化疗时间的延长,转移性患者从 23 个到 7 个的捕获 CTC 数量减少。MPA-Chip 的尺寸仅为 0.25cm,单个芯片的吞吐量为 0.5ml/h,可以通过多个 MPA-Chips 并行增加。

结论

菱形 MPA-Chip 提出了一种新的微柱几何形状,用于芯片上 CTC 的分离、检测和染色,未来还可以扩展到 CTC 的培养。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0c4/10173300/1cd66f18a910/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验