Suppr超能文献

运用主成分分析法阐明金-碳混合局域表面等离子体共振传感器的灵敏度与稳定性关系

Elucidating Sensitivity and Stability Relationship of Gold-Carbon Hybrid LSPR Sensors Using Principal Component Analysis.

作者信息

Bhalla Nikhil, Sharma Preetam Kumar, Chakrabarti Supriya

机构信息

Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, BT37 0QB Jordanstown, Northern Ireland, United Kingdom.

Heathcare Technology Hub, Ulster University, BT37 0QB Jordanstown, Northern Ireland, United Kingdom.

出版信息

ACS Omega. 2022 Jul 27;7(31):27664-27673. doi: 10.1021/acsomega.2c03326. eCollection 2022 Aug 9.

Abstract

Sensitive localized surface plasmon resonance (LSPR) sensing is achieved using nanostructured geometries of noble metals which typically have dimensions less than 100 nm. Among the plethora of geometries and materials, the spherical geometries of gold (Au) are widely used to develop sensitive bio/chemical sensors due to ease of manufacturing and biofunctionlization. One major limitation of spherical-shaped geometries of Au, used for LSPR sensing, is their low refractive index (RI) sensitivity which is commonly addressed by adding another material to the Au nanostructures. However, the process of addition of new material on Au nanostructures, while retaining the LSPR of Au, often comes with a trade-off which is associated with the instability of the developed composite, especially in harsh chemical environments. Addressing this challenge, we develop a Au-graphene-layered hybrid (Au-G) with high stability (studied up to 2 weeks here) and enhanced RI sensitivity (a maximum of 180.1 nm/RIU) for generic LSPR sensing applications using spherical Au nanostructures in harsh chemical environments, involving organic solvents. Additionally, by virtue of principal component analysis, we correlate stability and sensitivity of the developed system. The relationship suggests that the shelf life of the material is proportional to its sensitivity, while the stability of the sensor during the measurement in liquid environment decreases when the sensitivity of the material is increased. Though we uncover this relationship for the LSPR sensor, it remains evasive to explore similar relationships within other optical and electrochemical transduction techniques. Therefore, our work serves as a benchmark report in understanding/establishing new correlations between sensing parameters.

摘要

使用通常尺寸小于100 nm的贵金属纳米结构几何形状实现了灵敏的局域表面等离子体共振(LSPR)传感。在众多的几何形状和材料中,金(Au)的球形几何形状由于易于制造和生物功能化而被广泛用于开发灵敏的生物/化学传感器。用于LSPR传感的Au球形几何形状的一个主要限制是其低折射率(RI)灵敏度,通常通过在Au纳米结构中添加另一种材料来解决。然而,在保留Au的LSPR的同时在Au纳米结构上添加新材料的过程,往往伴随着一种权衡,这与所开发复合材料的不稳定性有关,尤其是在恶劣的化学环境中。为应对这一挑战,我们开发了一种具有高稳定性(在此研究长达2周)和增强的RI灵敏度(最大为180.1 nm/RIU)的Au-石墨烯层状复合材料(Au-G),用于在涉及有机溶剂的恶劣化学环境中使用球形Au纳米结构进行通用的LSPR传感应用。此外,通过主成分分析,我们关联了所开发系统的稳定性和灵敏度。这种关系表明,材料的保质期与其灵敏度成正比,而当材料的灵敏度增加时,传感器在液体环境中测量期间的稳定性会降低。尽管我们揭示了LSPR传感器的这种关系,但在其他光学和电化学传感技术中探索类似关系仍然难以捉摸。因此,我们的工作作为一份基准报告,有助于理解/建立传感参数之间的新关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/954a/9366941/89a2934cb6ed/ao2c03326_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验