Suppr超能文献

放射科医生在筛查性乳房 X 光摄影解读期间对基于人工智能的决策支持的偏好。

Radiologist Preferences for Artificial Intelligence-Based Decision Support During Screening Mammography Interpretation.

机构信息

Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.

Department of Radiology, University of Washington, Seattle Cancer Care Alliance, Seattle, Washington.

出版信息

J Am Coll Radiol. 2022 Oct;19(10):1098-1110. doi: 10.1016/j.jacr.2022.06.019. Epub 2022 Aug 13.

Abstract

BACKGROUND

Artificial intelligence (AI) may improve cancer detection and risk prediction during mammography screening, but radiologists' preferences regarding its characteristics and implementation are unknown.

PURPOSE

To quantify how different attributes of AI-based cancer detection and risk prediction tools affect radiologists' intentions to use AI during screening mammography interpretation.

MATERIALS AND METHODS

Through qualitative interviews with radiologists, we identified five primary attributes for AI-based breast cancer detection and four for breast cancer risk prediction. We developed a discrete choice experiment based on these attributes and invited 150 US-based radiologists to participate. Each respondent made eight choices for each tool between three alternatives: two hypothetical AI-based tools versus screening without AI. We analyzed samplewide preferences using random parameters logit models and identified subgroups with latent class models.

RESULTS

Respondents (n = 66; 44% response rate) were from six diverse practice settings across eight states. Radiologists were more interested in AI for cancer detection when sensitivity and specificity were balanced (94% sensitivity with <25% of examinations marked) and AI markup appeared at the end of the hanging protocol after radiologists complete their independent review. For AI-based risk prediction, radiologists preferred AI models using both mammography images and clinical data. Overall, 46% to 60% intended to adopt any of the AI tools presented in the study; 26% to 33% approached AI enthusiastically but were deterred if the features did not align with their preferences.

CONCLUSION

Although most radiologists want to use AI-based decision support, short-term uptake may be maximized by implementing tools that meet the preferences of dissuadable users.

摘要

背景

人工智能(AI)可能会提高乳腺癌筛查中的癌症检测和风险预测能力,但放射科医生对其特征和实施方式的偏好尚不清楚。

目的

定量评估基于 AI 的癌症检测和风险预测工具的不同属性如何影响放射科医生在筛查性乳房 X 线摄影解释中使用 AI 的意愿。

材料与方法

通过对放射科医生进行定性访谈,我们确定了基于 AI 的乳腺癌检测的五个主要属性和乳腺癌风险预测的四个主要属性。在此基础上,我们开发了一个基于离散选择的实验,并邀请了 150 名美国放射科医生参与。每位受访者对每个工具进行了八次选择,每个工具在三个选项之间进行比较:两种假设的基于 AI 的工具与不使用 AI 的筛查。我们使用随机参数对数模型分析了样本的偏好,并使用潜在类别模型确定了亚组。

结果

受访者(n=66;44%的回复率)来自全美八个州的六个不同的实践环境。当 AI 的灵敏度和特异性达到平衡(94%的灵敏度,<25%的检查被标记),并且 AI 标记出现在放射科医生完成独立审查后悬挂协议的末尾时,放射科医生对 AI 检测癌症更感兴趣。对于基于 AI 的风险预测,放射科医生更喜欢使用乳房 X 线照片和临床数据的 AI 模型。总体而言,46%至 60%的人打算采用研究中提出的任何一种 AI 工具;26%至 33%的人热情地接受 AI,但如果这些功能不符合他们的偏好,他们会感到沮丧。

结论

尽管大多数放射科医生希望使用基于 AI 的决策支持,但通过实施符合劝阻性用户偏好的工具,可能会最大限度地提高短期采用率。

相似文献

引用本文的文献

本文引用的文献

1
Artificial Intelligence Support for Mammography: In-Practice Clinical Experience.人工智能辅助乳腺钼靶检查:实际临床经验
J Am Coll Radiol. 2021 Nov;18(11):1510-1513. doi: 10.1016/j.jacr.2021.09.016. Epub 2021 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验