Suppr超能文献

基于深度学习的合成 X 射线图像的牙科植入物识别。

Deep learning-based dental implant recognition using synthetic X-ray images.

机构信息

Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa.

ESAT, Centre for Processing Speech and Images, KU Leuven, Leuven, Belgium.

出版信息

Med Biol Eng Comput. 2022 Oct;60(10):2951-2968. doi: 10.1007/s11517-022-02642-9. Epub 2022 Aug 18.

Abstract

A novel algorithm for generating artificial training samples from triangulated three-dimensional (3D) surface models within the context of dental implant recognition is proposed. The proposed algorithm is based on the calculation of two-dimensional (2D) projections (from a number of different angles) of 3D volumetric representations of computer-aided design (CAD) surface models. A fully convolutional network (FCN) is subsequently trained on the artificially generated X-ray images for the purpose of automatically identifying the connection type associated with a specific dental implant in an actual X-ray image. Semi-automated and fully automated systems are proposed for segmenting questioned dental implants from the background in actual X-ray images. Within the context of the semi-automated system, suitable regions of interest (ROIs), which contain the dental implants, are manually specified. However, as part of the fully automated system, suitable ROIs are automatically detected. It is demonstrated that a segmentation/detection accuracy of 94.0% and a classification/recognition accuracy of 71.7% are attainable within the context of the proposed fully automated system. Since the proposed systems utilise an ensemble of techniques that has not been employed for the purpose of dental implant classification/recognition on any previous occasion, the above-mentioned results are very encouraging.

摘要

提出了一种新算法,用于在牙科植入物识别的上下文中从三角化的三维(3D)表面模型生成人工训练样本。该算法基于计算计算机辅助设计(CAD)表面模型的三维体积表示的二维(2D)投影(来自多个不同角度)。随后,在人工生成的 X 射线图像上对全卷积网络(FCN)进行训练,以便自动识别实际 X 射线图像中与特定牙科植入物相关的连接类型。提出了半自动和全自动系统,用于从实际 X 射线图像中的背景中分割有问题的牙科植入物。在半自动系统的上下文中,手动指定包含牙科植入物的适当感兴趣区域(ROI)。然而,作为全自动系统的一部分,自动检测到合适的 ROI。结果表明,在提出的全自动系统的上下文中,可以实现 94.0%的分割/检测精度和 71.7%的分类/识别精度。由于所提出的系统利用了一组以前从未用于牙科植入物分类/识别的技术,因此上述结果非常令人鼓舞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9b2/9385426/b1342e71598f/11517_2022_2642_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验