Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.
School for Mental Health and Neuroscience (MHeNs), Department of Psychiatry and Neuropsychology, Maastricht University, 6200, Maastricht, the Netherlands.
Mol Neurobiol. 2024 Feb;61(2):541-566. doi: 10.1007/s12035-022-02985-2. Epub 2022 Aug 18.
Alzheimer's disease (AD) onset and progression is influenced by a complex interplay of several environmental and genetic factors, one of them gender. Pronounced gender differences have been observed both in the relative risk of developing AD and in clinical disease manifestations. A molecular level understanding of these gender disparities is still missing, but could provide important clues on cellular mechanisms modulating the disease and reveal new targets for gender-oriented disease-modifying precision therapies. We therefore present here a comprehensive single-cell analysis of disease-associated molecular gender differences in transcriptomics data from the neocortex, one of the brain regions most susceptible to AD, in one of the most widely used AD mouse models, the Tg2576 model. Cortical areas are also most commonly used in studies of post-mortem AD brains. To identify disease-linked molecular processes that occur before the onset of detectable neuropathology, we focused our analyses on an age with no detectable plaques and microgliosis. Cell-type specific alterations were investigated at the level of individual genes, pathways, and gene regulatory networks. The number of differentially expressed genes (DEGs) was not large enough to build context-specific gene regulatory networks for each individual cell type, and thus, we focused on the study of cell types with dominant changes and included analyses of changes across the combination of cell types. We observed significant disease-associated gender differences in cellular processes related to synapse organization and reactive oxygen species metabolism, and identified a limited set of transcription factors, including Egr1 and Klf6, as key regulators of many of the disease-associated and gender-dependent gene expression changes in the model. Overall, our analyses revealed significant cell-type specific gene expression changes in individual genes, pathways and sub-networks, including gender-specific and gender-dimorphic changes in both upstream transcription factors and their downstream targets, in the Tg2576 AD model before the onset of overt disease. This opens a window into molecular events that could determine gender-susceptibility to AD, and uncovers tractable target candidates for potential gender-specific precision medicine for AD.
阿尔茨海默病(AD)的发病和进展受到多种环境和遗传因素的复杂相互作用的影响,其中之一是性别。在 AD 的相对发病风险和临床疾病表现中,都观察到了明显的性别差异。尽管对这些性别差异的分子水平理解仍存在缺失,但它可以为调节疾病的细胞机制提供重要线索,并为针对性别、具有疾病修饰作用的精准治疗揭示新的靶点。因此,我们在这里呈现了一项全面的单细胞分析,针对的是转录组学数据中与疾病相关的分子性别差异,该分析基于大脑中最易受 AD 影响的区域之一——新皮层,以及最广泛使用的 AD 小鼠模型之一——Tg2576 模型。在对 AD 死后大脑的研究中,新皮层区域也最常被使用。为了确定在可检测的神经病理学发生之前发生的与疾病相关的分子过程,我们将分析重点放在一个没有可检测斑块和小胶质细胞增生的年龄上。在单个基因、通路和基因调控网络的水平上,我们研究了细胞类型特异性的改变。差异表达基因(DEG)的数量不足以构建每个细胞类型的特定于上下文的基因调控网络,因此,我们专注于研究具有主导变化的细胞类型,并包括对细胞类型组合变化的分析。我们观察到与突触组织和活性氧代谢相关的细胞过程中存在显著的与疾病相关的性别差异,并确定了一小部分转录因子,包括 Egr1 和 Klf6,作为模型中许多与疾病相关和性别依赖的基因表达变化的关键调节因子。总体而言,我们的分析揭示了在 Tg2576 AD 模型中,在明显的疾病发生之前,单个基因、通路和子网络中存在显著的细胞类型特异性基因表达变化,包括在转录因子及其下游靶标中都存在性别特异性和性别二态性变化。总的来说,这为可能决定 AD 性别易感性的分子事件打开了一扇窗户,并揭示了针对 AD 的潜在性别特异性精准医学的可行靶标候选者。