Su Wen, Tao Yingle, Wu Qiannan, Li Haiqing
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
ACS Appl Mater Interfaces. 2022 Aug 31;14(34):39637-39645. doi: 10.1021/acsami.2c12331. Epub 2022 Aug 19.
Development of industrially favorable metal-organic framework (MOF) monoliths is of paramount importance for their real-world applications. However, MOF monoliths prepared with the existing MOF shaping methods usually have seriously compromised accessible pores and suffer from inefficient and energy-intensive recycling, thereby greatly limiting their practical applications. We herein present a magnetic stuffed bun-structured MOF (mSBM) bead consisting of highly porous poly(vinyl alcohol) wraps stuffed with a binder-free powder mixture of UiO-66 and FeO nanoparticles. Such a unique structure and composition of the mSBM not only make its MOF component have a well-reserved crystal structure, surface area, and porosity and the corresponding accessible pores but also impart it with excellent localized magnetic induction heating (LMIH) capability that enables the sufficient heating and highly efficient recycling of the mSBM. These merits of mSBMs are further exemplified by assessing their atmospheric water adsorption and LMIH-driven water desorption performance. The mSBMs exhibit well-reserved atmospheric water adsorption capacities, up to 100% LMIH-driven water desorption, excellent reusability, and durability toward the practical applications. Our current work, therefore, demonstrates a new MOF shaping strategy to produce MOF monoliths with well-defined shapes, noncompromised accessible pores, and highly efficient recycling capabilities, paving a bright avenue to accelerate the practical applications of MOF monoliths.
开发对工业有利的金属有机框架(MOF)整体材料对其实际应用至关重要。然而,用现有的MOF成型方法制备的MOF整体材料通常具有严重受损的可及孔隙,并且存在回收效率低和能耗高的问题,从而极大地限制了它们的实际应用。我们在此展示了一种磁性包子结构的MOF(mSBM)珠子,它由高度多孔的聚乙烯醇包裹层组成,其中填充有无粘结剂的UiO-66和FeO纳米颗粒粉末混合物。mSBM这种独特的结构和组成不仅使其MOF组分具有保留良好的晶体结构、表面积和孔隙率以及相应的可及孔隙,还赋予其优异的局部磁感应加热(LMIH)能力,能够实现mSBM的充分加热和高效回收。通过评估它们的大气水吸附和LMIH驱动的水脱附性能,进一步例证了mSBM的这些优点。mSBM表现出保留良好的大气水吸附能力、高达100%的LMIH驱动的水脱附率、出色的可重复使用性以及对实际应用的耐久性。因此,我们目前的工作展示了一种新的MOF成型策略,以生产具有明确形状、未受损的可及孔隙和高效回收能力的MOF整体材料,为加速MOF整体材料的实际应用铺平了光明大道。