Suppr超能文献

基于集成学习的公交单次行程时间预测。

Bus Single-Trip Time Prediction Based on Ensemble Learning.

机构信息

Department of Information Management, School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China.

Department of Information Management, School of Management, Hangzhou Dianzi University, Hangzhou 310018, China.

出版信息

Comput Intell Neurosci. 2022 Aug 11;2022:6831167. doi: 10.1155/2022/6831167. eCollection 2022.

Abstract

The prediction of bus single-trip time is essential for passenger travel decision-making and bus scheduling. Since many factors could influence bus operations, the accurate prediction of the bus single-trip time faces a great challenge. Moreover, bus single-trip time has obvious nonlinear and seasonal characteristics. Hence, in order to improve the accuracy of bus single-trip time prediction, five prediction algorithms including LSTM (Long Short-term Memory), LR (Linear Regression), KNN (K-Nearest Neighbor), XGBoost (Extreme Gradient Boosting), and GRU (Gate Recurrent Unit) are used and examined as the base models, and three ensemble models are further constructed by using various ensemble methods including Random Forest (bagging), AdaBoost (boosting), and Linear Regression (stacking). A data-driven bus single-trip time prediction framework is then proposed, which consists of three phases including traffic data analysis, feature extraction, and ensemble model prediction. Finally, the data features and the proposed ensembled models are analyzed using real-world datasets that are collected from the Beijing Transportation Operations Coordination Center (TOCC). Through comparing the predicting results, the following conclusions are drawn: (1) the accuracy of predicting by using the three ensemble models constructed is better than the corresponding prediction results by using the five sub-models; (2) the Random Forest ensemble model constructed based on the bagging method has the best prediction accuracy among the three ensemble models; and (3) in terms of the five sub-models, the prediction accuracy of LR is better than that of the other four models.

摘要

预测公交车单趟行程时间对于乘客出行决策和公交车调度至关重要。由于许多因素都会影响公交车的运营,因此准确预测公交车单趟行程时间面临着巨大的挑战。此外,公交车单趟行程时间具有明显的非线性和季节性特征。因此,为了提高公交车单趟行程时间预测的准确性,使用了包括 LSTM(长短期记忆)、LR(线性回归)、KNN(K 近邻)、XGBoost(极端梯度提升)和 GRU(门控循环单元)在内的五种预测算法作为基础模型,并进一步构建了三种集成模型,这些集成模型使用了不同的集成方法,包括随机森林(bagging)、AdaBoost(boosting)和线性回归(stacking)。然后提出了一个数据驱动的公交车单趟行程时间预测框架,该框架由三个阶段组成,包括交通数据分析、特征提取和集成模型预测。最后,使用从北京市交通运行协调中心(TOCC)收集的真实数据集对数据特征和所提出的集成模型进行了分析。通过比较预测结果得出以下结论:(1)构建的三个集成模型的预测精度优于相应的五个子模型的预测结果;(2)基于 bagging 方法构建的随机森林集成模型在三个集成模型中具有最佳的预测精度;(3)就五个子模型而言,LR 的预测精度优于其他四个模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/110b/9388288/1623ee7664ee/CIN2022-6831167.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验