Suppr超能文献

一种考虑测量误差以优化识别肿瘤突变负担阈值的联合模型。

A Joint Model Considering Measurement Errors for Optimally Identifying Tumor Mutation Burden Threshold.

作者信息

Wang Yixuan, Lai Xin, Wang Jiayin, Xu Ying, Zhang Xuanping, Zhu Xiaoyan, Liu Yuqian, Shao Yang, Zhang Li, Fang Wenfeng

机构信息

School of Computer Science and Technology, Faculty of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an, China.

School of Management, Hefei University of Technology, Hefei, China.

出版信息

Front Genet. 2022 Aug 4;13:915839. doi: 10.3389/fgene.2022.915839. eCollection 2022.

Abstract

Tumor mutation burden (TMB) is a recognized stratification biomarker for immunotherapy. Nevertheless, the general TMB-high threshold is unstandardized due to severe clinical controversies, with the underlying cause being inconsistency between multiple assessment criteria and imprecision of the TMB value. The existing methods for determining TMB thresholds all consider only a single dimension of clinical benefit and ignore the interference of the TMB error. Our research aims to determine the TMB threshold optimally based on multifaceted clinical efficacies accounting for measurement errors. We report a multi-endpoint joint model as a generalized method for inferring the TMB thresholds, facilitating consistent statistical inference using an iterative numerical estimation procedure considering mis-specified covariates. The model optimizes the division by combining objective response rate and time-to-event outcomes, which may be interrelated due to some shared traits. We augment previous works by enabling subject-specific random effects to govern the communication among distinct endpoints. Our simulations show that the proposed model has advantages over the standard model in terms of precision and stability in parameter estimation and threshold determination. To validate the feasibility of the proposed thresholds, we pool a cohort of 73 patients with non-small-cell lung cancer and 64 patients with nasopharyngeal carcinoma who underwent anti-PD-(L)1 treatment, as well as validation cohorts of 943 patients. Analyses revealed that our approach could grant clinicians a holistic efficacy assessment, culminating in a robust determination of the TMB screening threshold for superior patients. Our methodology has the potential to yield innovative insights into therapeutic selection and support precision immuno-oncology.

摘要

肿瘤突变负荷(TMB)是一种公认的免疫治疗分层生物标志物。然而,由于严重的临床争议,一般的高TMB阈值尚未标准化,其根本原因是多种评估标准之间的不一致以及TMB值的不精确性。现有的确定TMB阈值的方法都只考虑了临床获益的单一维度,而忽略了TMB误差的干扰。我们的研究旨在基于考虑测量误差的多方面临床疗效来优化确定TMB阈值。我们报告了一种多终点联合模型,作为推断TMB阈值的通用方法,通过考虑错误指定协变量的迭代数值估计程序促进一致的统计推断。该模型通过结合客观缓解率和事件发生时间结局来优化划分,由于一些共同特征,这两个结局可能相互关联。我们通过允许个体特异性随机效应来控制不同终点之间的关联,对先前的工作进行了扩展。我们的模拟表明,在参数估计和阈值确定的精度和稳定性方面,所提出的模型优于标准模型。为了验证所提出阈值的可行性,我们汇集了一组73例接受抗PD-(L)1治疗的非小细胞肺癌患者和64例鼻咽癌患者,以及943例患者的验证队列。分析表明,我们的方法可以为临床医生提供全面的疗效评估,最终有力地确定优势患者的TMB筛查阈值。我们的方法有潜力为治疗选择带来创新性见解,并支持精准免疫肿瘤学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验