Suppr超能文献

来自LCCC1419的三阴性乳腺癌脑转移免疫基因组学的综合分析。

Comprehensive Analysis of the Immunogenomics of Triple-Negative Breast Cancer Brain Metastases From LCCC1419.

作者信息

Routh Eric D, Van Swearingen Amanda E D, Sambade Maria J, Vensko Steven, McClure Marni B, Woodcock Mark G, Chai Shengjie, Cuaboy Luz A, Wheless Amy, Garrett Amy, Carey Lisa A, Hoyle Alan P, Parker Joel S, Vincent Benjamin G, Anders Carey K

机构信息

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.

National Cancer Center Research Institute, Tokyo, Japan.

出版信息

Front Oncol. 2022 Jul 27;12:818693. doi: 10.3389/fonc.2022.818693. eCollection 2022.

Abstract

BACKGROUND

Triple negative breast cancer (TNBC) is an aggressive variant of breast cancer that lacks the expression of estrogen and progesterone receptors (ER and PR) and HER2. Nearly 50% of patients with advanced TNBC will develop brain metastases (BrM), commonly with progressive extracranial disease. Immunotherapy has shown promise in the treatment of advanced TNBC; however, the immune contexture of BrM remains largely unknown. We conducted a comprehensive analysis of TNBC BrM and matched primary tumors to characterize the genomic and immune landscape of TNBC BrM to inform the development of immunotherapy strategies in this aggressive disease.

METHODS

Whole-exome sequencing (WES) and RNA sequencing were conducted on formalin-fixed, paraffin-embedded samples of BrM and primary tumors of patients with clinical TNBC ( = 25, = 9 matched pairs) from the LCCC1419 biobank at UNC-Chapel Hill. Matched blood was analyzed by DNA sequencing as a comparison for tumor WES for the identification of somatic variants. A comprehensive genomics assessment, including mutational and copy number alteration analyses, neoantigen prediction, and transcriptomic analysis of the tumor immune microenvironment were performed.

RESULTS

Primary and BrM tissues were confirmed as TNBC (23/25 primaries, 16/17 BrM) by immunohistochemistry and of the basal intrinsic subtype (13/15 primaries and 16/19 BrM) by PAM50. Compared to primary tumors, BrM demonstrated a higher tumor mutational burden. was the most frequently mutated gene and was altered in 50% of the samples. Neoantigen prediction showed elevated cancer testis antigen- and endogenous retrovirus-derived MHC class I-binding peptides in both primary tumors and BrM and predicted that single-nucleotide variant (SNV)-derived peptides were significantly higher in BrM. BrM demonstrated a reduced immune gene signature expression, although a signature associated with fibroblast-associated wound healing was elevated in BrM. Metrics of T and B cell receptor diversity were also reduced in BrM.

CONCLUSIONS

BrM harbored higher mutational burden and SNV-derived neoantigen expression along with reduced immune gene signature expression relative to primary TNBC. Immune signatures correlated with improved survival, including T cell signatures. Further research will expand these findings to other breast cancer subtypes in the same biobank. Exploration of immunomodulatory approaches including vaccine applications and immune checkpoint inhibition to enhance anti-tumor immunity in TNBC BrM is warranted.

摘要

背景

三阴性乳腺癌(TNBC)是一种侵袭性乳腺癌变体,缺乏雌激素和孕激素受体(ER和PR)以及HER2的表达。近50%的晚期TNBC患者会发生脑转移(BrM),通常伴有颅外疾病进展。免疫疗法在晚期TNBC的治疗中显示出前景;然而,BrM的免疫背景仍 largely 未知。我们对TNBC BrM和匹配的原发性肿瘤进行了全面分析,以表征TNBC BrM的基因组和免疫格局,为这种侵袭性疾病的免疫治疗策略的制定提供信息。

方法

对来自北卡罗来纳大学教堂山分校LCCC1419生物库的临床TNBC患者(n = 25,n = 9匹配对)的BrM和原发性肿瘤的福尔马林固定、石蜡包埋样本进行全外显子测序(WES)和RNA测序。对匹配的血液进行DNA测序分析,作为肿瘤WES的对照,以鉴定体细胞变体。进行了全面的基因组评估,包括突变和拷贝数改变分析、新抗原预测以及肿瘤免疫微环境的转录组分析。

结果

通过免疫组织化学确认原发性和BrM组织为TNBC(23/25原发性,16/17 BrM),通过PAM50确认基底内在亚型(13/15原发性和16/19 BrM)。与原发性肿瘤相比,BrM表现出更高的肿瘤突变负担。TP53是最常突变的基因,在50%的样本中发生改变。新抗原预测显示原发性肿瘤和BrM中癌睾丸抗原和内源性逆转录病毒衍生的MHC I类结合肽均升高,并预测单核苷酸变体(SNV)衍生的肽在BrM中显著更高。BrM表现出免疫基因特征表达降低,尽管与成纤维细胞相关的伤口愈合相关的特征在BrM中升高。BrM中T和B细胞受体多样性的指标也降低。

结论

与原发性TNBC相比,BrM具有更高的突变负担和SNV衍生的新抗原表达,同时免疫基因特征表达降低。免疫特征与改善的生存率相关,包括T细胞特征。进一步的研究将把这些发现扩展到同一生物库中的其他乳腺癌亚型。有必要探索包括疫苗应用和免疫检查点抑制在内的免疫调节方法,以增强TNBC BrM中的抗肿瘤免疫力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2840/9387304/43a4b403f928/fonc-12-818693-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验