Suppr超能文献

劳动特征对母婴分娩结局的影响:一种机器学习模型。

Impact of labor characteristics on maternal and neonatal outcomes of labor: A machine-learning model.

机构信息

Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota.

Division of Health Care Delivery Research, Mayo Clinic, Rochester, Minnesota.

出版信息

PLoS One. 2022 Aug 22;17(8):e0273178. doi: 10.1371/journal.pone.0273178. eCollection 2022.

Abstract

INTRODUCTION

Since Friedman's seminal publication on laboring women, numerous publications have sought to define normal labor progress. However, there is paucity of data on contemporary labor cervicometry incorporating both maternal and neonatal outcomes. The objective of this study is to establish intrapartum prediction models of unfavorable labor outcomes using machine-learning algorithms.

MATERIALS AND METHODS

Consortium on Safe Labor is a large database consisting of pregnancy and labor characteristics from 12 medical centers in the United States. Outcomes, including maternal and neonatal outcomes, were retrospectively collected. We defined primary outcome as the composite of following unfavorable outcomes: cesarean delivery in active labor, postpartum hemorrhage, intra-amniotic infection, shoulder dystocia, neonatal morbidity, and mortality. Clinical and obstetric parameters at admission and during labor progression were used to build machine-learning risk-prediction models based on the gradient boosting algorithm.

RESULTS

Of 228,438 delivery episodes, 66,586 were eligible for this study. Mean maternal age was 26.95 ± 6.48 years, mean parity was 0.92 ± 1.23, and mean gestational age was 39.35 ± 1.13 weeks. Unfavorable labor outcome was reported in 14,439 (21.68%) deliveries. Starting at a cervical dilation of 4 cm, the area under receiver operating characteristics curve (AUC) of prediction models increased from 0.75 (95% confidence interval, 0.75-0.75) to 0.89 (95% confidence interval, 0.89-0.90) at a dilation of 10 cm. Baseline labor risk score was above 35% in patients with unfavorable outcomes compared to women with favorable outcomes, whose score was below 25%.

CONCLUSION

Labor risk score is a machine-learning-based score that provides individualized and dynamic alternatives to conventional labor charts. It predicts composite of adverse birth, maternal, and neonatal outcomes as labor progresses. Therefore, it can be deployed in clinical practice to monitor labor progress in real time and support clinical decisions.

摘要

简介

自弗里德曼(Friedman)发表有关产妇的开创性论文以来,已有大量出版物试图定义正常分娩进展。但是,关于包含母婴结局的当代分娩宫颈测量学的数据很少。本研究的目的是使用机器学习算法建立产时不良分娩结局的预测模型。

材料与方法

安全分娩联合会(Consortium on Safe Labor)是一个包含美国 12 家医疗中心妊娠和分娩特征的大型数据库。回顾性收集了包括母婴结局在内的结局数据。我们将主要结局定义为以下不良结局的综合:活跃分娩时行剖宫产术、产后出血、羊膜内感染、肩难产、新生儿发病率和死亡率。基于梯度提升算法,使用入院时和产程进展时的临床和产科参数来构建机器学习风险预测模型。

结果

在 228438 例分娩中,有 66586 例符合本研究标准。产妇平均年龄为 26.95 ± 6.48 岁,平均产次为 0.92 ± 1.23,平均孕龄为 39.35 ± 1.13 周。14439 例(21.68%)分娩报告了不良分娩结局。从宫颈扩张 4cm 开始,预测模型的受试者工作特征曲线(area under the receiver operating characteristics curve,AUC)从 0.75(95%置信区间,0.75-0.75)增加到 10cm 时的 0.89(95%置信区间,0.89-0.90)。与结局良好的产妇相比,结局不良的产妇基线产时风险评分超过 35%,而结局良好的产妇评分低于 25%。

结论

产时风险评分是一种基于机器学习的评分方法,为常规产程图提供了个性化和动态的替代方案。它随着产程的进展预测不良分娩、产妇和新生儿结局的综合情况。因此,它可以在临床实践中部署,以实时监测产程并支持临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6fe/9394788/11a1dd0ce207/pone.0273178.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验