Thakur Debjoy, Das Ishapathik, Chakravarty Shubhashree
Department of Mathematics and Statistics, Indian Institute of Technology, Tirupati, India.
Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India.
Model Earth Syst Environ. 2023;9(1):175-194. doi: 10.1007/s40808-022-01484-6. Epub 2022 Aug 18.
Interpolating a skewed conditional spatial random field with missing data is cumbersome in the absence of Gaussianity assumptions. Copulas can capture different types of joint tail characteristics beyond the Gaussian paradigm. Maintaining spatial homogeneity and continuity around the observed random spatial point is also challenging. Especially when interpolating along a spatial surface, the boundary points also demand focus in forming a neighborhood. As a result, importing the concept of hierarchical clustering on the spatial random field is necessary for developing the copula model with the interface of the Expectation-Maximization algorithm and concurrently utilizing the idea of the Bayesian framework. This article introduces a spatial cluster-based C-vine copula and a modified Gaussian distance kernel to derive a novel spatial probability distribution. To make spatial copula interpolation compatible and efficient, we estimate the parameter by employing different techniques. We apply the proposed spatial interpolation approach to the air pollution of Delhi as a crucial circumstantial study to demonstrate this newly developed novel spatial estimation technique.
在缺乏高斯假设的情况下,对具有缺失数据的倾斜条件空间随机场进行插值是很麻烦的。Copulas能够捕捉超出高斯范式的不同类型的联合尾部特征。在观测到的随机空间点周围保持空间同质性和连续性也具有挑战性。特别是在沿空间曲面进行插值时,边界点在形成邻域时也需要重点关注。因此,在空间随机场上引入层次聚类的概念对于开发具有期望最大化算法接口的Copula模型并同时利用贝叶斯框架的思想是必要的。本文引入了基于空间聚类的C-vine Copula和改进的高斯距离核,以推导一种新颖的空间概率分布。为了使空间Copula插值兼容且高效,我们采用不同的技术来估计参数。我们将所提出的空间插值方法应用于德里的空气污染,作为一个关键的实证研究,以展示这种新开发的新颖空间估计技术。