Department of Computer Science, Wake Forest University, Winston-Salem, NC, USA.
Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA.
Comput Biol Med. 2022 Oct;149:105999. doi: 10.1016/j.compbiomed.2022.105999. Epub 2022 Aug 19.
Lung cancer is one of the leading causes of cancer-related death, with a five-year survival rate of 18%. It is a priority for us to understand the underlying mechanisms affecting lung cancer therapeutics' implementation and effectiveness. In this study, we combine the power of Bioinformatics and Systems Biology to comprehensively uncover functional and signaling pathways of drug treatment using bioinformatics inference and multiscale modeling of both scRNA-seq data and proteomics data. Based on a time series of lung adenocarcinoma derived A549 cells after DEX treatment, we first identified the differentially expressed genes (DEGs) in those lung cancer cells. Through the interrogation of regulatory network of those DEGs, we identified key hub genes including TGFβ, MYC, and SMAD3 varied underlie DEX treatment. Further gene set enrichment analysis revealed the TGFβ signaling pathway as the top enriched term. Those genes involved in the TGFβ pathway and their crosstalk with the ERBB pathway presented a strong survival prognosis in clinical lung cancer samples. With the basis of biological validation and literature-based curation, a multiscale model of tumor regulation centered on both TGFβ-induced and ERBB-amplified signaling pathways was developed to characterize the dynamic effects of DEX therapy on lung cancer cells. Our simulation results were well matched to available data of SMAD2, FOXO3, TGFβ1, and TGFβR1 over the time course. Moreover, we provided predictions of different doses to illustrate the trend and therapeutic potential of DEX treatment. The innovative and cross-disciplinary approach can be further applied to other computational studies in tumorigenesis and oncotherapy. We released the approach as a user-friendly tool named BIMM (Bioinformatic Inference and Multiscale Modeling), with all the key features available at https://github.com/chenm19/BIMM.
肺癌是癌症相关死亡的主要原因之一,五年生存率为 18%。了解影响肺癌治疗实施和效果的潜在机制是我们的优先事项。在这项研究中,我们结合生物信息学和系统生物学的力量,使用生物信息学推断和单细胞 RNA 测序数据和蛋白质组学数据的多尺度建模,全面揭示药物治疗的功能和信号通路。基于 DEX 处理后肺腺癌细胞的时间序列,我们首先鉴定了这些肺癌细胞中的差异表达基因(DEGs)。通过对这些 DEGs 的调控网络进行询问,我们确定了关键的枢纽基因,包括 TGFβ、MYC 和 SMAD3,它们在 DEX 治疗下发生变化。进一步的基因集富集分析显示 TGFβ 信号通路是最富集的术语。那些参与 TGFβ 通路及其与 ERBB 通路相互作用的基因在临床肺癌样本中表现出强烈的生存预后。在基于生物学验证和基于文献的策展的基础上,建立了一个以 TGFβ 诱导和 ERBB 扩增信号通路为中心的肿瘤调节多尺度模型,以描述 DEX 治疗对肺癌细胞的动态影响。我们的模拟结果与 SMAD2、FOXO3、TGFβ1 和 TGFβR1 在时间过程中的可用数据非常吻合。此外,我们提供了不同剂量的预测,以说明 DEX 治疗的趋势和治疗潜力。这种创新的跨学科方法可以进一步应用于肿瘤发生和肿瘤治疗的其他计算研究。我们将该方法作为一个名为 BIMM(生物信息学推断和多尺度建模)的用户友好工具发布,所有关键功能都可在 https://github.com/chenm19/BIMM 上获得。