Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
Nat Commun. 2022 Aug 23;13(1):4948. doi: 10.1038/s41467-022-32645-x.
Radiation therapy (RT) activates an in situ vaccine effect when combined with immune checkpoint blockade (ICB), yet this effect may be limited because RT does not fully optimize tumor antigen presentation or fully overcome suppressive mechanisms in the tumor-immune microenvironment. To overcome this, we develop a multifunctional nanoparticle composed of polylysine, iron oxide, and CpG (PIC) to increase tumor antigen presentation, increase the ratio of M1:M2 tumor-associated macrophages, and enhance stimulation of a type I interferon response in conjunction with RT. In syngeneic immunologically "cold" murine tumor models, the combination of RT, PIC, and ICB significantly improves tumor response and overall survival resulting in cure of many mice and consistent activation of tumor-specific immune memory. Combining RT with PIC to elicit a robust in situ vaccine effect presents a simple and readily translatable strategy to potentiate adaptive anti-tumor immunity and augment response to ICB or potentially other immunotherapies.
放射治疗 (RT) 与免疫检查点阻断 (ICB) 联合使用时会激活原位疫苗效应,但这种效应可能受到限制,因为 RT 不能完全优化肿瘤抗原呈递或完全克服肿瘤免疫微环境中的抑制机制。为了克服这一限制,我们开发了一种由聚赖氨酸、氧化铁和 CpG(PIC)组成的多功能纳米颗粒,以增加肿瘤抗原呈递,增加 M1:M2 肿瘤相关巨噬细胞的比例,并增强与 RT 结合的 I 型干扰素反应的刺激。在同种异体免疫“冷”的小鼠肿瘤模型中,RT、PIC 和 ICB 的联合使用显著改善了肿瘤反应和总生存期,导致许多小鼠治愈,并持续激活肿瘤特异性免疫记忆。将 RT 与 PIC 相结合以引发强大的原位疫苗效应,为增强适应性抗肿瘤免疫和增强对 ICB 或潜在其他免疫疗法的反应提供了一种简单且易于转化的策略。