Suppr超能文献

藻酸盐微纤维作为治疗性递药支架和组织模拟物。

Alginate microfibers as therapeutic delivery scaffolds and tissue mimics.

机构信息

College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA.

出版信息

Exp Biol Med (Maywood). 2022 Dec;247(23):2103-2118. doi: 10.1177/15353702221112905. Epub 2022 Aug 23.

Abstract

Alginate, a naturally occurring polysaccharide, has been widely used in cell encapsulation, 3D culture, cell therapy, tissue engineering, and regenerative medicine. Alginate's frequent use comes from its biocompatibility and ability to easily form hydrogel in a variety of forms (e.g. microcapsules, microfibers, and porous scaffolds), which can provide immunoprotection for cell therapy and mimic the extracellular matrix for tissue engineering. During the past 15 years, alginate hydrogel microfibers have attracted more and more attention due to its continuous thin tubular structures (diameter or shell thickness ⩽ 200 µm), high-density cell growth, high handleability and retrievability, and scalability. This review article provides a concise overview of alginate and its resultant hydrogel microfibers for the purpose of promoting multidisciplinary, collaborative, and convergent research in the field. It starts with a historical review of alginate as biomaterials and provides basics about alginate structure, properties, and mechanisms of hydrogel formation, followed by current challenges in effective cell delivery and functional tissue engineering. In particular, this work discusses how alginate microfiber technology could provide solutions to unmet needs with a focus on the current state of the art of alginate microfiber technology and its applications in 3D cell culture, cell delivery, and tissue engineering. At last, we discuss future directions in the perspective of alginate-based advanced technology development in biology and medicine.

摘要

藻酸盐是一种天然存在的多糖,已被广泛应用于细胞封装、3D 培养、细胞治疗、组织工程和再生医学。藻酸盐的频繁使用源于其生物相容性和易于形成各种形式水凝胶的能力(例如微胶囊、微纤维和多孔支架),这可以为细胞治疗提供免疫保护并模拟组织工程中的细胞外基质。在过去的 15 年中,藻酸盐水凝胶微纤维由于其连续的细管状结构(直径或壳厚度⩽200μm)、高密度细胞生长、高可处理性和可回收性以及可扩展性而受到越来越多的关注。本文综述了藻酸盐及其水凝胶微纤维在促进该领域多学科、合作和融合研究方面的应用。本文首先回顾了作为生物材料的藻酸盐,并提供了藻酸盐结构、性质和水凝胶形成机制方面的基础知识,然后讨论了有效细胞递送和功能性组织工程方面的当前挑战。特别是,本文讨论了藻酸盐微纤维技术如何为未满足的需求提供解决方案,重点介绍了藻酸盐微纤维技术的最新进展及其在 3D 细胞培养、细胞递送和组织工程中的应用。最后,我们从基于藻酸盐的先进生物医学技术发展的角度讨论了未来的发展方向。

相似文献

1
Alginate microfibers as therapeutic delivery scaffolds and tissue mimics.
Exp Biol Med (Maywood). 2022 Dec;247(23):2103-2118. doi: 10.1177/15353702221112905. Epub 2022 Aug 23.
3
Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques.
ACS Appl Mater Interfaces. 2016 Jan 20;8(2):1080-6. doi: 10.1021/acsami.5b11445. Epub 2016 Jan 8.
4
Composite ECM-alginate microfibers produced by microfluidics as scaffolds with biomineralization potential.
Mater Sci Eng C Mater Biol Appl. 2015 Nov 1;56:141-53. doi: 10.1016/j.msec.2015.06.004. Epub 2015 Jun 9.
5
Bottom-up engineering of cell-laden hydrogel microfibrous patch for guided tissue regeneration.
Mater Sci Eng C Mater Biol Appl. 2020 Mar;108:110488. doi: 10.1016/j.msec.2019.110488. Epub 2019 Nov 23.
7
The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications.
Int J Biol Macromol. 2022 Jul 1;212:561-578. doi: 10.1016/j.ijbiomac.2022.05.157. Epub 2022 May 25.
8
Nano-/microfiber scaffold for tissue engineering: physical and biological properties.
J Biomed Mater Res A. 2012 Nov;100(11):3051-8. doi: 10.1002/jbm.a.34242. Epub 2012 Jun 19.
9
Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
J Biomed Mater Res A. 2017 May;105(5):1457-1468. doi: 10.1002/jbm.a.36036. Epub 2017 Feb 25.
10
Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering.
Appl Biochem Biotechnol. 2014 May;173(2):433-48. doi: 10.1007/s12010-014-0851-0. Epub 2014 Apr 12.

引用本文的文献

1
Evaluation of Alginate Hydrogel Microstrands for Stromal Cell Encapsulation and Maintenance.
Bioengineering (Basel). 2024 Apr 13;11(4):375. doi: 10.3390/bioengineering11040375.
2
Nanomaterials-incorporated hydrogels for 3D bioprinting technology.
Nano Converg. 2023 Nov 15;10(1):52. doi: 10.1186/s40580-023-00402-5.
3
Advances in Biodegradable Polymers and Biomaterials for Medical Applications-A Review.
Molecules. 2023 Aug 24;28(17):6213. doi: 10.3390/molecules28176213.
4
Alginate-Based Biomaterials in Tissue Engineering and Regenerative Medicine.
Mar Drugs. 2023 Mar 18;21(3):189. doi: 10.3390/md21030189.
6
The therapeutic bionanoscience interface.
Exp Biol Med (Maywood). 2022 Dec;247(23):2065-2066. doi: 10.1177/15353702221144090. Epub 2022 Dec 19.

本文引用的文献

1
Hybrid Hydrogels with Extremely High Stiffness and Toughness.
ACS Macro Lett. 2014 Jun 17;3(6):520-523. doi: 10.1021/mz5002355. Epub 2014 May 19.
2
3
Alginate Hydrogel Microtubes for Salivary Gland Cell Organization and Cavitation.
Bioengineering (Basel). 2022 Jan 15;9(1):38. doi: 10.3390/bioengineering9010038.
4
Microfluidic Printing of Tunable Hollow Microfibers for Vascular Tissue Engineering.
Adv Mater Technol. 2021 Aug;6(8). doi: 10.1002/admt.202000683. Epub 2021 Jun 10.
5
A flexible microfluidic strategy to generate grooved microfibers for guiding cell alignment.
Biomater Sci. 2021 Jul 13;9(14):4880-4890. doi: 10.1039/d1bm00549a.
7
Restriction of Cancer Metastatic Potential Using Embryonic Stem Cells Encapsulated in Alginate Hydrogel Microstrands.
ACS Biomater Sci Eng. 2017 Aug 14;3(8):1769-1779. doi: 10.1021/acsbiomaterials.7b00237. Epub 2017 Jun 15.
8
Tubular Microcapsules with Polysaccharide Membranes Based on a Co-axial Microfluidic Chip.
ACS Biomater Sci Eng. 2019 Nov 11;5(11):6281-6289. doi: 10.1021/acsbiomaterials.9b01077. Epub 2019 Oct 22.
9
One-Step Generation of Aqueous-Droplet-Filled Hydrogel Fibers as Organoid Carriers Using an All-in-Water Microfluidic System.
ACS Appl Mater Interfaces. 2021 Jan 20;13(2):3199-3208. doi: 10.1021/acsami.0c20434. Epub 2021 Jan 6.
10
Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes.
Nat Protoc. 2021 Feb;16(2):937-964. doi: 10.1038/s41596-020-00442-9. Epub 2020 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验