Suppr超能文献

整合来自不同 Rapid-E 设备的参考数据可支持在更多地点进行自动花粉检测。

Integration of reference data from different Rapid-E devices supports automatic pollen detection in more locations.

机构信息

BioSensе Institute - Research Institute for Information Technologies in Biosystems, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia.

Research and Innovation Centre - Fondazione Edmund Mach, Via E. Mach, 1, 38010 San Michele all'Adige, Italy.

出版信息

Sci Total Environ. 2022 Dec 10;851(Pt 2):158234. doi: 10.1016/j.scitotenv.2022.158234. Epub 2022 Aug 23.

Abstract

Pollen is the most common cause of seasonal allergies, affecting over 33 % of the European population, even when considering only grasses. Informing the population and clinicians in real-time about the actual presence of pollen in the atmosphere is essential to reduce its harmful health and economic impact. Thus, there is a growing network of automatic particle analysers, and the reproducibility and transferability of implemented models are recommended since a reference dataset for local pollen of interest needs to be collected for each device to classify pollen, which is complex and time-consuming. Therefore, it would be beneficial to incorporate the reference dataset collected from other devices in different locations. However, it must be considered that laser-induced data are prone to device-specific noise due to laser and detector sensibility. This study collected data from two Rapid-E bioaerosol identifiers in Serbia and Italy and implemented a multi-modal convolutional neural network for pollen classification. We showed that models lost their performance when trained on data from one and tested on another device, not only in terms of the recognition ability but also in comparison with the manual measurements from Hirst-type traps. To enable pollen classification with just one model in both study locations, we first included the missing pollen classes in the dataset from the other study location, but it showed poor results, implying that data of one pollen class from different devices are more different than data of different pollen classes from one device. Combining all available reference data in a single model enabled the classification of a higher number of pollen classes in both study locations. Finally, we implemented a domain adaptation method, which improved the recognition ability and the correlations of transferred models only for several pollen classes.

摘要

花粉是季节性过敏的最常见原因,影响了超过 33%的欧洲人口,即使只考虑草类花粉也是如此。实时告知民众和临床医生空气中实际存在的花粉,对于减轻花粉对健康和经济的有害影响至关重要。因此,越来越多的自动颗粒分析仪网络正在建立,建议对实施的模型进行可重复性和可转移性评估,因为需要为每台设备收集感兴趣的本地花粉的参考数据集,以对花粉进行分类,这是复杂且耗时的。因此,将其他设备收集的参考数据集纳入进来可能会有所帮助。然而,必须考虑到激光诱导的数据由于激光和探测器的灵敏度容易受到设备特定噪声的影响。本研究从塞尔维亚和意大利的两台 Rapid-E 生物气溶胶识别器收集数据,并实施了一种多模态卷积神经网络来进行花粉分类。我们表明,当在一台设备上训练的数据上进行训练,而在另一台设备上进行测试时,模型的性能会下降,不仅在识别能力方面,而且在与赫氏陷阱手动测量的比较方面也是如此。为了仅在两个研究地点使用一个模型进行花粉分类,我们首先在另一个研究地点的数据集中包含缺失的花粉类别,但结果不佳,这意味着来自不同设备的一个花粉类别的数据比来自一个设备的不同花粉类别的数据差异更大。将所有可用的参考数据合并到一个单一的模型中,使两个研究地点都能对更多的花粉类别进行分类。最后,我们实现了一种域自适应方法,仅对几个花粉类别提高了转移模型的识别能力和相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验