Suppr超能文献

用于低维流形拓扑评估的代价函数。

Cost function for low-dimensional manifold topology assessment.

作者信息

Zdybał Kamila, Armstrong Elizabeth, Sutherland James C, Parente Alessandro

机构信息

Université Libre de Bruxelles, École polytechnique de Bruxelles, Aero-Thermo-Mechanics Laboratory, Brussels, Belgium.

Université Libre de Bruxelles and Vrije Universiteit Brussel, Combustion and Robust Optimization Group (BURN), Brussels, Belgium.

出版信息

Sci Rep. 2022 Aug 25;12(1):14496. doi: 10.1038/s41598-022-18655-1.

Abstract

In reduced-order modeling, complex systems that exhibit high state-space dimensionality are described and evolved using a small number of parameters. These parameters can be obtained in a data-driven way, where a high-dimensional dataset is projected onto a lower-dimensional basis. A complex system is then restricted to states on a low-dimensional manifold where it can be efficiently modeled. While this approach brings computational benefits, obtaining a good quality of the manifold topology becomes a crucial aspect when models, such as nonlinear regression, are built on top of the manifold. Here, we present a quantitative metric for characterizing manifold topologies. Our metric pays attention to non-uniqueness and spatial gradients in physical quantities of interest, and can be applied to manifolds of arbitrary dimensionality. Using the metric as a cost function in optimization algorithms, we show that optimized low-dimensional projections can be found. We delineate a few applications of the cost function to datasets representing argon plasma, reacting flows and atmospheric pollutant dispersion. We demonstrate how the cost function can assess various dimensionality reduction and manifold learning techniques as well as data preprocessing strategies in their capacity to yield quality low-dimensional projections. We show that improved manifold topologies can facilitate building nonlinear regression models.

摘要

在降阶建模中,具有高状态空间维度的复杂系统通过少量参数来描述和演化。这些参数可以通过数据驱动的方式获得,即将高维数据集投影到低维基上。然后,复杂系统被限制在低维流形上的状态,在那里可以对其进行有效建模。虽然这种方法带来了计算优势,但当诸如非线性回归等模型建立在流形之上时,获得高质量的流形拓扑结构就成为一个关键方面。在此,我们提出一种用于表征流形拓扑结构的定量度量。我们的度量关注感兴趣物理量中的非唯一性和空间梯度,并且可以应用于任意维度的流形。通过在优化算法中使用该度量作为代价函数,我们表明可以找到优化的低维投影。我们阐述了该代价函数在表示氩等离子体、反应流和大气污染物扩散的数据集上的一些应用。我们展示了代价函数如何评估各种降维和流形学习技术以及数据预处理策略生成高质量低维投影的能力。我们表明改进的流形拓扑结构有助于构建非线性回归模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e90/9411209/c7c83f2844ce/41598_2022_18655_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验