Jang Chan-Hee, Atmaca Gökhan, Cha Ho-Young
School of Electrical and Electronic Engineering, Hongik University, Mapo-gu, Seoul 04066, Korea.
Micromachines (Basel). 2022 Jul 27;13(8):1185. doi: 10.3390/mi13081185.
A normally-off β-GaO metal-oxide-semiconductor field-effect transistor (MOSFET) is proposed using a technology computer-aided design (TCAD) device simulation, which employs an epitaxial drift layer grown on an -type low-doped body layer. The low-doped body layer under the MOS gate enabled normally-off operation, whereas the epitaxial drift layer determined the on-resistance and breakdown characteristics. The effects of the doping concentration of each layer and thickness of the drift channel layer on the device characteristics were investigated to design a device with a breakdown voltage of 1 kV. A threshold voltage of 1.5 V and a breakdown voltage of 1 kV were achieved by an -type body layer with a doping concentration of 1 × 10 cm and an -type drift layer with a doping concentration of 3 × 10 cm, a thickness of 150 nm, and a gate-to-drain distance of 9.5 μm; resulting in an on-resistance of 25 mΩ·cm.
采用技术计算机辅助设计(TCAD)器件模拟方法,提出了一种常关型β-GaO金属氧化物半导体场效应晶体管(MOSFET),该器件采用在n型低掺杂体层上生长的外延漂移层。MOS栅极下方的低掺杂体层实现了常关操作,而外延漂移层决定了导通电阻和击穿特性。为设计出击穿电压为1 kV的器件,研究了各层掺杂浓度和漂移沟道层厚度对器件特性的影响。通过掺杂浓度为1×10¹⁵ cm⁻³的n型体层和掺杂浓度为3×10¹⁶ cm⁻³、厚度为150 nm且栅极到漏极距离为9.5 μm的n型漂移层,实现了1.5 V的阈值电压和1 kV的击穿电压;导通电阻为25 mΩ·cm² 。 (注:原文中“1 × 10 cm”和“3 × 10 cm”表述似乎有误,推测应为“1 × 10¹⁵ cm⁻³”和“3 × 10¹⁶ cm⁻³”,翻译时按推测内容翻译,如有错误请根据实际情况调整)