Suppr超能文献

利用可见-近红外光谱数据和光谱特征波段选择估算中国南疆地区土壤有机碳。

Estimation of Soil Organic Carbon Using Vis-NIR Spectral Data and Spectral Feature Bands Selection in Southern Xinjiang, China.

机构信息

College of Agriculture, Tarim University, Alar 843300, China.

College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.

出版信息

Sensors (Basel). 2022 Aug 16;22(16):6124. doi: 10.3390/s22166124.

Abstract

Soil organic carbon (SOC) plays an important role in the global carbon cycle and soil fertility supply. Rapid and accurate estimation of SOC content could provide critical information for crop production, soil management and soil carbon pool regulation. Many researchers have confirmed the feasibility and great potential of visible and near-infrared (Vis-NIR) spectroscopy in evaluating SOC content rapidly and accurately. Here, to evaluate the feasibility of different spectral bands variable selection methods for SOC prediction, we collected a total of 330 surface soil samples from the cotton field in the Alar Reclamation area in the southern part of Xinjiang, which is located in the arid region of northwest China. Then, we estimated the SOC content using laboratory Vis-NIR spectral. The Particle Swarm optimization (PSO), Competitive adaptive reweighted sampling (CARS) and Ant colony optimization (ACO) were adopted to select SOC feature bands. The partial least squares regression (PLSR), random forest (RF) and convolutional neural network (CNN) inversion models were constructed by using full-bands (400-2400 nm) spectra (R) and feature bands, respectively. And we also analyzed the effects of spectral feature band selection methods and modeling methods on the prediction accuracy of SOC. The results indicated that: (1) There are significant differences in the feature bands selected using different methods. The feature bands selected methods substantially reduced the spectral variable dimensionality and model complexity. The models built by the feature bands selected by CARS, PSO and ACO methods showed the different potential of improvement in model accuracy compared with the full-band models. (2) The CNN model had the best performance for predicting SOC. The R of the optimal CNN model is 0.90 in the validation, which was improved by 0.05 and 0.04 in comparison with the PLSR and RF model, respectively. (3) The highest prediction accuracy was archived by the CNN model using the feature bands selected by CARS (validation set R = 0.90, RMSE = 0.97 g kg, RPD = 3.18, RPIQ = 3.11). This study indicated that using the CARS method to select spectral feature bands, combined with the CNN modeling method can well predict SOC content with higher accuracy.

摘要

土壤有机碳(SOC)在全球碳循环和土壤肥力供应中起着重要作用。快速准确地估计 SOC 含量可以为作物生产、土壤管理和土壤碳库调节提供关键信息。许多研究人员已经证实,可见近红外(Vis-NIR)光谱在快速准确评估 SOC 含量方面具有可行性和巨大潜力。在这里,为了评估不同光谱波段变量选择方法对 SOC 预测的可行性,我们从位于中国西北部干旱地区的新疆南部阿拉尔开垦区的棉田共采集了 330 个表层土壤样本,然后使用实验室 Vis-NIR 光谱法估计 SOC 含量。采用粒子群优化(PSO)、竞争自适应重加权采样(CARS)和蚁群优化(ACO)算法选择 SOC 特征波段。利用全波段(400-2400nm)光谱(R)和特征波段分别构建偏最小二乘回归(PLSR)、随机森林(RF)和卷积神经网络(CNN)反演模型,并分析了光谱特征波段选择方法和建模方法对 SOC 预测精度的影响。结果表明:(1)不同方法选择的特征波段存在显著差异。特征波段选择方法大大降低了光谱变量的维度和模型的复杂性。与全波段模型相比,CARS、PSO 和 ACO 方法选择特征波段建立的模型在提高模型精度方面具有不同的潜力。(2)CNN 模型对 SOC 的预测效果最好。最优 CNN 模型在验证集的 R 为 0.90,与 PLSR 和 RF 模型相比,分别提高了 0.05 和 0.04。(3)使用 CARS 方法选择光谱特征波段,结合 CNN 建模方法,可获得最高的预测精度(验证集 R = 0.90,RMSE = 0.97gkg,RPD = 3.18,RPIQ = 3.11)。本研究表明,采用 CARS 方法选择光谱特征波段,结合 CNN 建模方法,可以更好地提高预测 SOC 含量的精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d629/9413329/6b9367fe63aa/sensors-22-06124-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验