Suppr超能文献

基于众包的室内语义地图构建与利用图优化的定位

Crowdsourcing-Based Indoor Semantic Map Construction and Localization Using Graph Optimization.

作者信息

Li Chao, Chai Wennan, Yang Xiaohui, Li Qingdang

机构信息

College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China.

College of Sino-German Institute Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China.

出版信息

Sensors (Basel). 2022 Aug 20;22(16):6263. doi: 10.3390/s22166263.

Abstract

The advancement of smartphones with multiple built-in sensors facilitates the development of crowdsourcing-based indoor map construction and localization. This paper proposes a crowdsourcing-based indoor semantic map construction and localization method using graph optimization. Using waypoints, semantic landmarks, and Wi-Fi landmarks as nodes and the relevance between waypoints and landmarks (i.e., waypoint-waypoint, waypoint-semantic, waypoint-Wi-Fi, semantic-semantic, and Wi-Fi-Wi-Fi) as edges, the optimization graph is constructed. Initializing the venue map is the single-track semantic map with the highest quality, as determined by a proposed map quality evaluation function. The aligned venue and candidate maps are optimized while satisfying the constraints, with the candidate map exhibiting the highest degree of similarity to the venue map. The lightweight venue map is then updated in terms of waypoint and landmark attributes, as well as the relationship between waypoints and landmarks. To determine a pedestrian's location on a venue map, similarities between a local map and a venue map are evaluated. Experiments conducted in an office building and shopping mall scenes demonstrate that crowdsourcing-based venue maps are superior to single-track semantic maps. Additionally, the landmark matching-based localization method can achieve a mean localization error of less than 0.5 m on the venue map, compared to 0.6 m in a single-track semantic map.

摘要

具备多个内置传感器的智能手机的发展推动了基于众包的室内地图构建与定位技术的发展。本文提出了一种基于众包的、利用图优化的室内语义地图构建与定位方法。以路点、语义地标和Wi-Fi地标作为节点,并将路点与地标之间的相关性(即路点-路点、路点-语义、路点-Wi-Fi、语义-语义和Wi-Fi-Wi-Fi)作为边,构建优化图。通过所提出的地图质量评估函数确定,初始化场地地图为质量最高的单轨语义地图。在满足约束条件的同时,对对齐后的场地地图和候选地图进行优化,使候选地图与场地地图具有最高程度的相似性。然后根据路点和地标的属性以及路点与地标之间的关系更新轻量级场地地图。为了在场地地图上确定行人的位置,需要评估局部地图与场地地图之间的相似性。在办公楼和购物中心场景中进行的实验表明,基于众包的场地地图优于单轨语义地图。此外,基于地标匹配的定位方法在场地地图上的平均定位误差可小于0.5米,而在单轨语义地图中为0.6米。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8827/9415773/4ae1c0e35c35/sensors-22-06263-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验