Suppr超能文献

新冠疫情波的临近预报和预测:传播的递归性和随机性

Nowcasting and forecasting COVID-19 waves: the recursive and stochastic nature of transmission.

作者信息

Albani V V L, Albani R A S, Massad E, Zubelli J P

机构信息

Department of Mathematics, Federal University of Santa Catarina, Florianopolis, Brazil.

Instituto Politecnico do Rio de Janeiro, Rio de Janeiro State University, Nova Friburgo, Brazil.

出版信息

R Soc Open Sci. 2022 Aug 24;9(8):220489. doi: 10.1098/rsos.220489. eCollection 2022 Aug.

Abstract

We propose a parsimonious, yet effective, susceptible-exposed-infected-removed-type model that incorporates the time change in the transmission and death rates. The model is calibrated by Tikhonov-type regularization from official reports from New York City (NYC), Chicago, the State of São Paulo, in Brazil and British Columbia, in Canada. To forecast, we propose different ways to extend the transmission parameter, considering its estimated values. The forecast accuracy is then evaluated using real data from the above referred places. All the techniques accurately provided forecast scenarios for periods 15 days long. One of the models effectively predicted the magnitude of the four waves of infections in NYC, including the one caused by the Omicron variant for periods of 45 days using out-of-sample data.

摘要

我们提出了一个简约但有效的易感-暴露-感染-清除型模型,该模型纳入了传播率和死亡率随时间的变化。该模型通过蒂霍诺夫型正则化方法,根据来自纽约市(NYC)、芝加哥、巴西圣保罗州以及加拿大不列颠哥伦比亚省的官方报告进行校准。为了进行预测,我们根据传播参数的估计值,提出了不同的方法来扩展该参数。然后使用上述地点的实际数据评估预测准确性。所有这些技术都准确地提供了长达15天的预测情景。其中一个模型有效地预测了纽约市四波感染的规模,包括使用样本外数据对由奥密克戎变种引起的感染浪潮进行了长达45天的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d3d/9399708/89b03b87cf18/rsos220489f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验