Suppr超能文献

作为时间上分层贝叶斯推理的情绪动力学。

Emotion dynamics as hierarchical Bayesian inference in time.

作者信息

Majumdar Gargi, Yazin Fahd, Banerjee Arpan, Roy Dipanjan

机构信息

Cognitive Brain Dynamics Lab, National Brain Research Centre, NH 8, Manesar, Gurgaon, Haryana 122052, India.

Centre for Brain Science and Applications, School of AIDE, IIT Jodhpur, NH 62, Surpura Bypass Rd, Karwar, Rajasthan 342030, India.

出版信息

Cereb Cortex. 2023 Mar 21;33(7):3750-3772. doi: 10.1093/cercor/bhac305.

Abstract

What fundamental property of our environment would be most valuable and optimal in characterizing the emotional dynamics we experience in daily life? Empirical work has shown that an accurate estimation of uncertainty is necessary for our optimal perception, learning, and decision-making. However, the role of this uncertainty in governing our affective dynamics remains unexplored. Using Bayesian encoding, decoding and computational modeling, on a large-scale neuroimaging and behavioral data on a passive movie-watching task, we showed that emotions naturally arise due to ongoing uncertainty estimations about future outcomes in a hierarchical neural architecture. Several prefrontal subregions hierarchically encoded a lower-dimensional signal that highly correlated with the evolving uncertainty. Crucially, the lateral orbitofrontal cortex (lOFC) tracked the temporal fluctuations of this uncertainty and was predictive of the participants' predisposition to anxiety. Furthermore, we observed a distinct functional double-dissociation within OFC with increased connectivity between medial OFC and DMN, while with that of lOFC and FPN in response to the evolving affect. Finally, we uncovered a temporally predictive code updating an individual's beliefs spontaneously with fluctuating outcome uncertainty in the lOFC. A biologically relevant and computationally crucial parameter in the theories of brain function, we propose uncertainty to be central to the definition of complex emotions.

摘要

在描述我们在日常生活中所经历的情绪动态时,我们所处环境的哪种基本属性最有价值且最为理想呢?实证研究表明,准确估计不确定性对于我们的最佳感知、学习和决策是必要的。然而,这种不确定性在调节我们的情感动态方面所起的作用仍未得到探索。利用贝叶斯编码、解码和计算建模方法,基于一项关于被动观看电影任务的大规模神经成像和行为数据,我们发现情绪自然产生于在分层神经结构中对未来结果持续进行的不确定性估计。几个前额叶亚区域对一个与不断变化的不确定性高度相关的低维信号进行分层编码。至关重要的是,外侧眶额皮质(lOFC)追踪这种不确定性的时间波动,并能预测参与者的焦虑倾向。此外,我们观察到眶额皮质内存在一种独特的功能双分离现象,即内侧眶额皮质与默认模式网络(DMN)之间的连接性增加,而外侧眶额皮质与额顶网络(FPN)之间的连接性则随着情感的变化而增加。最后,我们发现了一种随时间预测的编码,它会随着外侧眶额皮质中结果不确定性的波动而自发更新个体的信念。作为脑功能理论中一个与生物学相关且在计算上至关重要的参数,我们提出不确定性是复杂情绪定义的核心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验