Suppr超能文献

从英国康复结果协作数据库中的措施预测长时间意识障碍的恢复:使用机器学习的多中心分析。

Prediction of emergence from prolonged disorders of consciousness from measures within the UK rehabilitation outcomes collaborative database: a multicentre analysis using machine learning.

机构信息

School of Clinical Sciences, Auckland University of Technology, Auckland, New Zealand.

School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand.

出版信息

Disabil Rehabil. 2023 Sep;45(18):2906-2914. doi: 10.1080/09638288.2022.2114017. Epub 2022 Aug 27.

Abstract

PURPOSE

Predicting emergence from prolonged disorders of consciousness (PDOC) is important for planning care and treatment. We used machine learning to examine which variables from routine clinical data on admission to specialist rehabilitation units best predict emergence by discharge.

MATERIALS AND METHODS

A multicentre national cohort analysis of prospectively collected clinical data from the UK Rehabilitation Outcomes (UKROC) database 2010-2018. Patients ( = 1170) were operationally defined as "still in PDOC" or "emerged" by their total UK Functional Assessment Measure (FIM + FAM) discharge score. Variables included: Age, aetiology, length of stay, time since onset, and all items of the Neurological Impairment Scale, Rehabilitation Complexity Scale, Northwick Park Dependency Scale, and the Patient Categorisation Tool. After filtering, prediction of emergence was explored using four techniques: binary logistic regression, linear discriminant analysis, artificial neural networks, and rule induction.

RESULTS

Triangulation through these techniques consistently identified characteristics associated with emergence from PDOC. severe motor impairment, complex disability, medical and behavioural instability, and anoxic aetiology were predictive of non-emergence, whereas those with severe motor impairment, agitated behaviour and complex disability were predictive of emergence.

CONCLUSIONS

This initial exploration demonstrates the potential opportunities to enhance prediction of outcome using machine learning techniques to explore routinely collected clinical data. Implications for rehabilitationPredicting emergence from prolonged disorders of consciousness is important for planning care and treatment.Few evidence-based criteria exist for aiding clinical decision-making and existing criteria are mostly based upon acute admission data.Whilst acknowledging the limitations of using proxy data for diagnosis of emergence, this study suggests that key items from the UKROC dataset, routinely collected on admission to specialist rehabilitation some months post injury, may help to predict those patients who are more (or less) likely to regain consciousness.Machine learning can help to enhance our understanding of the best predictors of outcome and thus assist with clinical decision-making in PDOC.

摘要

目的

预测长时间意识障碍(PDOC)的苏醒对于规划护理和治疗非常重要。我们使用机器学习来检查入院时常规临床数据中的哪些变量最能预测出院时的苏醒。

材料和方法

这是一项对英国康复结果(UKROC)数据库 2010-2018 年期间前瞻性收集的临床数据进行的多中心全国队列分析。通过他们的总 UK 功能评估量表(FIM+FAM)出院评分,将患者(n=1170)操作定义为“仍处于 PDOC”或“苏醒”。变量包括:年龄、病因、住院时间、发病时间、以及神经损伤量表、康复复杂量表、北威克公园依赖量表和患者分类工具的所有项目。经过筛选,使用四种技术(二项逻辑回归、线性判别分析、人工神经网络和规则归纳)探索了苏醒的预测。

结果

通过这些技术的三角测量,一致确定了与 PDOC 苏醒相关的特征。严重运动障碍、复杂残疾、医疗和行为不稳定以及缺氧病因与非苏醒相关,而那些有严重运动障碍、激越行为和复杂残疾的患者则与苏醒相关。

结论

这项初步探索表明,使用机器学习技术探索常规收集的临床数据,有潜力增强对预后的预测。对康复的影响预测长时间意识障碍的苏醒对于规划护理和治疗非常重要。很少有基于证据的标准可以帮助临床决策,现有的标准主要基于急性入院数据。尽管承认使用代理数据来诊断苏醒存在局限性,但这项研究表明,UKROC 数据集的关键项目,即在受伤后数月专门康复机构入院时常规收集,可能有助于预测那些更有可能(或不太可能)恢复意识的患者。机器学习可以帮助我们更好地理解预后的最佳预测因素,从而协助 PDOC 中的临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb15/9612927/d31b2edfaa4c/IDRE_A_2114017_F0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验