Petras Argyrios, Ling Leevan, Ruuth Steven J
Johann Radon Institute for Computational and Applied Mathematics (RICAM), Altenbergerstrasse 69, 4040 Linz, Austria.
Hong Kong Baptist University, Kowloon Tong, Hong Kong.
J Sci Comput. 2022;93(1):11. doi: 10.1007/s10915-022-01966-w. Epub 2022 Aug 22.
We analyze a class of meshfree semi-Lagrangian methods for solving advection problems on smooth, closed surfaces with solenoidal velocity field. In particular, we prove the existence of an embedding equation whose corresponding semi-Lagrangian methods yield the ones in the literature for solving problems on surfaces. Our analysis allows us to apply standard bulk domain convergence theories to the surface counterparts. In addition, we provide detailed descriptions for implementing the proposed methods to run on point clouds. After verifying the convergence rates against the theory, we show that the proposed method is a robust building block for more complicated problems, such as advection problems with non-solenoidal velocity field, inviscid Burgers' equations and systems of reaction advection diffusion equations for pattern formation.
我们分析了一类无网格半拉格朗日方法,用于求解具有螺线管速度场的光滑封闭曲面上的平流问题。特别地,我们证明了存在一个嵌入方程,其相应的半拉格朗日方法产生了文献中用于求解曲面上问题的方法。我们的分析使我们能够将标准的体域收敛理论应用于曲面问题。此外,我们还提供了在点云上运行所提出方法的详细实现描述。在验证了与理论相符的收敛速度后,我们表明所提出的方法是解决更复杂问题的一个稳健构建块,例如具有非螺线管速度场的平流问题、无粘伯格斯方程以及用于模式形成的反应平流扩散方程组。