Wu Jinpeng, Li Ming-Hua, Jiang Yan, Xu Qiaoling, Xian Lede, Guo Haodan, Wan Jing, Wen Rui, Fang Yanyan, Xie Dongmei, Lei Yan, Hu Jin-Song, Lin Yuan
Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, China.
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
ACS Nano. 2022 Sep 27;16(9):15063-15071. doi: 10.1021/acsnano.2c06171. Epub 2022 Aug 29.
Metal oxides are the most efficient electron transport layers (ETLs) in perovskite solar cells (PSCs). However, issues related to the bulk (i.e., insufficient electron mobility, unfavorable energy level position) and interface of metal oxide/perovskite (detrimental surface hydroxyl groups) limit the transport kinetics of photoinduced electrons and prevent PSCs from unleashing their theoretical efficiency potential. Herein, the inorganic InP colloid quantum dots (CQDs) with outstanding electron mobility (4600 cm V s) and carboxyl (-COOH) terminal ligands were uniformly distributed into the metal oxide ETL to form consecutive electron transport channels. The hybrid InP CQD-based ETL demonstrates a more N-type characteristic with more than 3-fold improvement in electron mobility. The formation of the Sn-O-In bond facilitates electron extraction due to suitable energy level alignment between the ETL and perovskite. The strong interaction between uncoordinated Pb at the perovskite/ETL interface and the -COO in the ligand of InP CQDs reduces the density of defects in perovskite. As a result, the hybrid InP CQD-based ETL with an optimized InP ratio (18 wt %) boosts the power conversion efficiency of PSCs from 22.38 to 24.09% (certified efficiency of 23.43%). Meanwhile, the device demonstrates significantly improved photostability and atmospheric storage stability.
金属氧化物是钙钛矿太阳能电池(PSC)中效率最高的电子传输层(ETL)。然而,与金属氧化物的本体(即电子迁移率不足、能级位置不利)以及金属氧化物/钙钛矿界面(有害的表面羟基)相关的问题限制了光生电子的传输动力学,并阻碍PSC发挥其理论效率潜力。在此,具有出色电子迁移率(4600 cm² V⁻¹ s⁻¹)和羧基(-COOH)末端配体的无机InP胶体量子点(CQD)被均匀分布到金属氧化物ETL中,形成连续的电子传输通道。基于InP CQD的混合ETL表现出更明显的N型特性,电子迁移率提高了3倍以上。Sn-O-In键的形成由于ETL与钙钛矿之间合适的能级排列而有利于电子提取。钙钛矿/ETL界面处未配位的Pb与InP CQD配体中的-COO之间的强相互作用降低了钙钛矿中的缺陷密度。结果,具有优化InP比例(18 wt%)的基于InP CQD的混合ETL将PSC的功率转换效率从22.38%提高到24.09%(认证效率为23.43%)。同时,该器件表现出显著提高的光稳定性和大气存储稳定性。