Suppr超能文献

在工程化骨组织中生物制造血管树。

Biofabricating the vascular tree in engineered bone tissue.

作者信息

de Silva Leanne, Bernal Paulina N, Rosenberg Ajw, Malda Jos, Levato Riccardo, Gawlitta Debby

机构信息

Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands; Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, the Netherlands.

Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, the Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands.

出版信息

Acta Biomater. 2023 Jan 15;156:250-268. doi: 10.1016/j.actbio.2022.08.051. Epub 2022 Aug 28.

Abstract

The development of tissue engineering strategies for treatment of large bone defects has become increasingly relevant, given the growing demand for bone substitutes. Native bone is composed of a dense vascular network necessary for the regulation of bone development, regeneration and homeostasis. A major obstacle in fabricating living, clinically relevant-sized bone mimics (1-10 cm) is the limited supply of nutrients, including oxygen to the core of the construct. Therefore, strategies to support vascularization are pivotal for the development of tissue engineered bone constructs. Creating a functional bone construct integrated with a vascular network, capable of delivering the necessary nutrients for optimal tissue development is imperative for translation into the clinics. The vascular system is composed of a complex network that runs throughout the body in a tree-like hierarchical branching fashion. A significant challenge for tissue engineering approaches lies in mimicking the intricate, multi-scale structures consisting of larger vessels (macro-vessels) which interconnect with multiple sprouting vessels (microvessels) in a closed network. The advent of biofabrication has enabled complex, out of plane channels to be generated and has laid the groundwork for the creation of multi-scale vasculature in recent years. This review highlights the key state-of-the-art achievements for the development of vascular networks of varying scales in the field of biofabrication with a particular focus for its application in developing a functional tissue engineered bone construct. STATEMENT OF SIGNIFICANCE: There is a growing need for bone substitutes to overcome the limited supply of patient-derived bone. Bone tissue engineering aims to overcome this by combining stem cells with scaffolds to restore missing bone. The current bottleneck in upscaling is the lack of an integrated vascular network, required for the delivery of nutrients to cells. 3D bioprinting techniques has enabled the creation of complex hollow structures of varying dimensions that resemble native blood vessels. The convergence of multiple materials, cell types and fabrication approaches, opens the possibility of developing clinically-relevant sized vascularized bone constructs. This review provides an up-to-date insight of the technologies currently available for the generation of complex vascular networks, with a focus on their application in bone tissue engineering.

摘要

鉴于对骨替代物的需求不断增长,用于治疗大骨缺损的组织工程策略的发展变得越来越重要。天然骨由调节骨发育、再生和内环境稳定所必需的密集血管网络组成。制造具有临床相关尺寸(1-10厘米)的活体骨模拟物的一个主要障碍是营养物质供应有限,包括向构建体核心供应氧气。因此,支持血管化的策略对于组织工程骨构建体的发展至关重要。创建一个与血管网络整合的功能性骨构建体,能够为最佳组织发育输送必要的营养物质,对于转化应用于临床至关重要。血管系统由一个复杂的网络组成,以树状分层分支的方式贯穿全身。组织工程方法面临的一个重大挑战在于模仿由较大血管(大血管)组成的复杂多尺度结构,这些大血管在封闭网络中与多个发芽血管(微血管)相互连接。生物制造技术的出现使得能够生成复杂的平面外通道,并为近年来创建多尺度脉管系统奠定了基础。本综述重点介绍了生物制造领域中不同尺度血管网络发展的关键前沿成果,特别关注其在开发功能性组织工程骨构建体中的应用。重要性声明:对骨替代物的需求日益增长,以克服患者自身骨供应有限的问题。骨组织工程旨在通过将干细胞与支架相结合来修复缺失的骨,从而克服这一问题。目前扩大规模的瓶颈是缺乏一个整合的血管网络,而这是向细胞输送营养物质所必需的。3D生物打印技术能够创建各种尺寸的复杂中空结构,类似于天然血管。多种材料、细胞类型和制造方法的融合,为开发临床相关尺寸的血管化骨构建体提供了可能性。本综述提供了目前可用于生成复杂血管网络的技术的最新见解,重点关注它们在骨组织工程中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验