Institute for Advanced Simulations IAS-5 and Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany.
Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany.
Handb Exp Pharmacol. 2024;283:81-100. doi: 10.1007/164_2022_593.
The Chloride Channel (CLC) family includes proton-coupled chloride and fluoride transporters. Despite their similar protein architecture, the former exchange two chloride ions for each proton and are inhibited by fluoride, whereas the latter efficiently transport one fluoride in exchange for one proton. The combination of structural, mutagenesis, and functional experiments with molecular simulations has pinpointed several amino acid changes in the permeation pathway that capitalize on the different chemical properties of chloride and fluoride to fine-tune protein function. Here we summarize recent findings on fluoride inhibition and transport in the two prototypical members of the CLC family, the chloride/proton transporter from Escherichia coli (CLC-ec1) and the fluoride/proton transporter from Enterococcus casseliflavus (CLC-eca).
氯离子通道(CLC)家族包括质子偶联氯离子和氟离子转运体。尽管它们具有相似的蛋白质结构,但前者每交换一个质子就会交换两个氯离子,并被氟化物抑制,而后者则能有效地将一个氟化物交换为一个质子。结构、突变和功能实验与分子模拟的结合,确定了渗透途径中的几个氨基酸变化,这些变化利用了氯离子和氟化物的不同化学性质来微调蛋白质功能。在这里,我们总结了最近在 CLC 家族的两个原型成员,即大肠杆菌的氯离子/质子转运体(CLC-ec1)和 Enterococcus casseliflavus 的氟离子/质子转运体(CLC-eca)中,关于氟化物抑制和转运的发现。