Suppr超能文献

肺癌特异性罕见 BRAF 突变体对实验性和临床批准的激酶抑制剂的预估敏感性特征。

Estimated sensitivity profiles of lung cancer specific uncommon BRAF mutants towards experimental and clinically approved kinase inhibitors.

机构信息

Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad 500007, India.

Centre for Advanced Research and Innovation in Structural Biology of Diseases, Department of Biotechnology, KLEF University, Vaddeswaram, Andhra Pradesh, India.

出版信息

Toxicol Appl Pharmacol. 2022 Oct 15;453:116213. doi: 10.1016/j.taap.2022.116213. Epub 2022 Aug 29.

Abstract

Current experimental and clinical data are inadequate to conclusively predict the oncogenicity of uncommon BRAF mutants and their sensitivity towards kinase inhibitors. Therefore, the present study aims at estimating sensitivity profiles of uncommon lung cancer specific BRAF mutations towards clinically approved as well as experimental therapeutics based on computationally derived direct binding energies. Based on the data derived from cBioportal, BRAF mutants displayed significant mutual exclusivity with KRAS and EGFR mutants indicating them as potential drivers in lung cancer. Predicted sensitivity of BRAF-V600E conformed to published experimental and clinical data thus validating the usefulness of computational approach. The BRAF-V600K displayed higher sensitivity to most inhibitors as compared to that of the BRAF-V600E. All the uncommon mutants displayed higher sensitivity than both the wild type and BRAF-V600E towards PLX 8394 and LSN3074753. While V600K, G469R and N581S displayed favorable sensitivity profiles to most inhibitors, V600L/M, G466A/E/V and G469A/V displayed resistance profiles to a variable degree. Notably, molecular dynamic (MD) simulation revealed that increased number of interactions caused enhanced sensitivity of G469R and N581S towards sorafenib. RAF kinase inhibitors were further classified into two groups as per their selectivity (Group I: BRAF-V600E-selective and Group II: CRAF-selective) based on which potential mutation-wise combinations of RAF kinase inhibitors were proposed to overcome resistance. Based on computational inhibitor sensitivity profiles, appropriate treatment strategies may be devised to prevent or overcome secondary drug resistance in lung cancer patients with uncommon mutations.

摘要

目前的实验和临床数据还不足以明确预测罕见 BRAF 突变体的致癌性及其对激酶抑制剂的敏感性。因此,本研究旨在根据计算得出的直接结合能,评估罕见肺癌特异性 BRAF 突变对临床批准的以及实验性治疗药物的敏感性。根据 cBioportal 获得的数据,BRAF 突变体与 KRAS 和 EGFR 突变体存在显著的互斥性,表明它们是肺癌的潜在驱动因素。BRAF-V600E 的预测敏感性与已发表的实验和临床数据一致,从而验证了计算方法的有用性。与 BRAF-V600E 相比,BRAF-V600K 对大多数抑制剂的敏感性更高。与野生型和 BRAF-V600E 相比,所有罕见突变体对 PLX 8394 和 LSN3074753 的敏感性都更高。虽然 V600K、G469R 和 N581S 对大多数抑制剂表现出有利的敏感性,但 V600L/M、G466A/E/V 和 G469A/V 对各种程度的抑制剂显示出耐药性。值得注意的是,分子动力学(MD)模拟表明,相互作用的增加导致 G469R 和 N581S 对索拉非尼的敏感性增强。根据其选择性,将 RAF 激酶抑制剂进一步分为两组(I 组:BRAF-V600E 选择性;II 组:CRAF 选择性),据此提出 RAF 激酶抑制剂潜在的突变特异性组合,以克服耐药性。基于计算抑制剂敏感性谱,可以制定适当的治疗策略,以预防或克服肺癌患者罕见突变的继发性药物耐药性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验