Physics for Medicine Paris, National Institute of Health and Medical Research (INSERM) U1273, ESPCI Paris, Paris Sciences and Lettres University, French National Centre for Scientific Research (CNRS) UMR 8063, Paris, France.
Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
J Acoust Soc Am. 2022 Aug;152(2):1003. doi: 10.1121/10.0013426.
Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results. Nine different benchmarks of increasing geometric complexity are defined. These include a single-layer planar bone immersed in water, a multi-layer bone, and a whole skull. Two transducer configurations are considered (a focused bowl and a plane piston operating at 500 kHz), giving a total of 18 permutations of the benchmarks. Eleven different modeling tools are used to compute the benchmark results. The models span a wide range of numerical techniques, including the finite-difference time-domain method, angular spectrum method, pseudospectral method, boundary-element method, and spectral-element method. Good agreement is found between the models, particularly for the position, size, and magnitude of the acoustic focus within the skull. When comparing results for each model with every other model in a cross-comparison, the median values for each benchmark for the difference in focal pressure and position are less than 10% and 1 mm, respectively. The benchmark definitions, model results, and intercomparison codes are freely available to facilitate further comparisons.
声波传播的计算模型在经颅超声治疗中经常被使用,例如,计算颅内压力场或计算相位延迟以校正颅骨变形。为了允许社区中使用的不同建模工具和技术之间进行相互比较,成立了一个国际工作组来制定一组数值基准。在这里,提出了这些基准以及相互比较的结果。定义了九个不同的几何复杂度不断增加的基准。这些基准包括浸入水中的单层平面骨、多层骨和整个颅骨。考虑了两种换能器配置(聚焦碗和在 500 kHz 下工作的平面活塞),总共对基准进行了 18 次排列。使用了十一种不同的建模工具来计算基准结果。这些模型涵盖了广泛的数值技术,包括有限差分时域方法、角谱方法、伪谱方法、边界元方法和谱元方法。模型之间发现了很好的一致性,特别是对于颅骨内声焦点的位置、大小和幅度。当在交叉比较中比较每个模型与其他每个模型的结果时,对于焦点压力和位置的每个基准的差异的中位数值分别小于 10%和 1 毫米。基准定义、模型结果和相互比较代码是免费提供的,以方便进一步比较。