Suppr超能文献

基于边缘增强网络的医学图像三维血管样结构分割。

3D vessel-like structure segmentation in medical images by an edge-reinforced network.

机构信息

College of Information Engineering, Capital Normal University, Beijing, China.

College of Information Engineering, Capital Normal University, Beijing, China; Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China; School of Control Science and Engineering, Shandong University, Jinan, China.

出版信息

Med Image Anal. 2022 Nov;82:102581. doi: 10.1016/j.media.2022.102581. Epub 2022 Aug 22.

Abstract

The vessel-like structure in biomedical images, such as within cerebrovascular and nervous pathologies, is an essential biomarker in understanding diseases' mechanisms and in diagnosing and treating diseases. However, existing vessel-like structure segmentation methods often produce unsatisfactory results due to challenging segmentations for crisp edges. The edge and nonedge voxels of the vessel-like structure in three-dimensional (3D) medical images usually have a highly imbalanced distribution as most voxels are non-edge, making it challenging to find crisp edges. In this work, we propose a generic neural network for the segmentation of the vessel-like structures in different 3D medical imaging modalities. The new edge-reinforced neural network (ER-Net) is based on an encoder-decoder architecture. Moreover, a reverse edge attention module and an edge-reinforced optimization loss are proposed to increase the weight of the voxels on the edge of the given 3D volume to discover and better preserve the spatial edge information. A feature selection module is further introduced to select discriminative features adaptively from an encoder and decoder simultaneously, which aims to increase the weight of edge voxels, thus significantly improving the segmentation performance. The proposed method is thoroughly validated using four publicly accessible datasets, and the experimental results demonstrate that the proposed method generally outperforms other state-of-the-art algorithms for various metrics.

摘要

生物医学图像中的管状结构,如脑血管和神经病变中的管状结构,是理解疾病机制以及诊断和治疗疾病的重要生物标志物。然而,现有的管状结构分割方法由于对边缘的分割具有挑战性,往往产生不理想的结果。三维(3D)医学图像中管状结构的边缘和非边缘体素通常具有高度不平衡的分布,因为大多数体素是非边缘的,因此很难找到清晰的边缘。在这项工作中,我们提出了一种用于分割不同 3D 医学成像模式下管状结构的通用神经网络。新的边缘增强神经网络(ER-Net)基于编码器-解码器架构。此外,提出了反向边缘注意模块和边缘增强优化损失,以增加给定 3D 体积边缘上体素的权重,从而发现和更好地保留空间边缘信息。进一步引入了特征选择模块,从编码器和解码器同时自适应地选择有区别的特征,旨在增加边缘体素的权重,从而显著提高分割性能。该方法在四个公开可用的数据集上进行了全面验证,实验结果表明,该方法在各种指标上普遍优于其他最先进的算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验