Cao Shuang, Xu Yifeng, Yu Zhongzheng, Zhang Peng, Xu Xiaoyi, Sui Ning, Zhou Tingting, Zhang Tong
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China.
Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
Small. 2022 Oct;18(42):e2203715. doi: 10.1002/smll.202203715. Epub 2022 Sep 4.
Limited by the insufficient active sites and the interference from breath humidity, designing reliable gas sensing materials with high activity and moisture resistance remains a challenge to analyze human exhaled breath for the translational application of medical diagnostics. Herein, the dual sensing and cooperative diagnosis is achieved by utilizing metal-organic frameworks (MOFs) and its derivative. The Fe-MIL-101-NH serves as the quartz crystal microbalance humidity sensing layer, which exhibits high selectivity and rapid response time (16 s/15 s) to water vapor. Then, the Co and Ni cations are further co-doped into Fe-MIL-101-NH host to obtain the derived Co/Ni/Fe trimetallic oxides (CoNiFe-MOS-n). The chemiresistive CoNiFe-MOS-n sensor displays the high sensitivity (560) and good selectivity to acetone, together with a lower original resistance compared with Fe O and NiFe O . Moreover, as a proof-of-concept application, synergistic integration of Fe-MIL-101-NH and derived CoNiFe-MOS-n is carried out. The Fe-MIL-101-NH is applied as moisture sorbent materials, which realize a sensitivity compensation of CoNiFe-MOS-n sensors for the detection of acetone (biomarker gas of diabetes). The findings provide an insight for effective utilization of MOFs and the derived materials to achieve a trace gas detection in exhaled breath analysis.
由于活性位点不足以及呼吸湿度的干扰,设计具有高活性和耐湿性的可靠气体传感材料仍然是一个挑战,难以对人体呼出气体进行分析以用于医学诊断的转化应用。在此,通过利用金属有机框架(MOF)及其衍生物实现了双传感和协同诊断。Fe-MIL-101-NH用作石英晶体微天平湿度传感层,对水蒸气表现出高选择性和快速响应时间(16秒/15秒)。然后,将Co和Ni阳离子进一步共掺杂到Fe-MIL-101-NH主体中,以获得衍生的Co/Ni/Fe三金属氧化物(CoNiFe-MOS-n)。化学电阻型CoNiFe-MOS-n传感器对丙酮显示出高灵敏度(560)和良好的选择性,与Fe₂O₃和NiFe₂O₄相比,其原始电阻更低。此外,作为概念验证应用,将Fe-MIL-101-NH和衍生的CoNiFe-MOS-n进行了协同集成。Fe-MIL-101-NH用作吸湿材料,实现了CoNiFe-MOS-n传感器对丙酮(糖尿病生物标志物气体)检测的灵敏度补偿。这些发现为有效利用MOF及其衍生材料以实现呼出气体分析中的痕量气体检测提供了思路。