Suppr超能文献

基于网络注释器实现深度分割的稳健高通量表型分析

Robust High-Throughput Phenotyping with Deep Segmentation Enabled by a Web-Based Annotator.

作者信息

Yuan Jialin, Kaur Damanpreet, Zhou Zheng, Nagle Michael, Kiddle Nicholas George, Doshi Nihar A, Behnoudfar Ali, Peremyslova Ekaterina, Ma Cathleen, Strauss Steven H, Li Fuxin

机构信息

Oregon State University, Corvallis, OR, USA.

University of Southern California, Los Angeles, CA, USA.

出版信息

Plant Phenomics. 2022 May 18;2022:9893639. doi: 10.34133/2022/9893639. eCollection 2022.

Abstract

The abilities of plant biologists and breeders to characterize the genetic basis of physiological traits are limited by their abilities to obtain quantitative data representing precise details of trait variation, and particularly to collect this data at a high-throughput scale with low cost. Although deep learning methods have demonstrated unprecedented potential to automate plant phenotyping, these methods commonly rely on large training sets that can be time-consuming to generate. Intelligent algorithms have therefore been proposed to enhance the productivity of these annotations and reduce human efforts. We propose a high-throughput phenotyping system which features a Graphical User Interface (GUI) and a novel interactive segmentation algorithm: Semantic-Guided Interactive Object Segmentation (SGIOS). By providing a user-friendly interface and intelligent assistance with annotation, this system offers potential to streamline and accelerate the generation of training sets, reducing the effort required by the user. Our evaluation shows that our proposed SGIOS model requires fewer user inputs compared to the state-of-art models for interactive segmentation. As a case study of the use of the GUI applied for genetic discovery in plants, we present an example of results from a preliminary genome-wide association study (GWAS) of regeneration in (poplar). We further demonstrate that the inclusion of a semantic prior map with SGIOS can accelerate the training process for future GWAS, using a sample of a dataset extracted from a poplar GWAS of regeneration. The capabilities of our phenotyping system surpass those of unassisted humans to rapidly and precisely phenotype our traits of interest. The scalability of this system enables large-scale phenomic screens that would otherwise be time-prohibitive, thereby providing increased power for GWAS, mutant screens, and other studies relying on large sample sizes to characterize the genetic basis of trait variation. Our user-friendly system can be used by researchers lacking a computational background, thus helping to democratize the use of deep segmentation as a tool for plant phenotyping.

摘要

植物生物学家和育种家表征生理性状遗传基础的能力,受到他们获取代表性状变异精确细节的定量数据的能力限制,尤其是以低成本高通量规模收集此类数据的能力。尽管深度学习方法已展现出在植物表型自动化方面前所未有的潜力,但这些方法通常依赖于耗时生成的大型训练集。因此,人们提出了智能算法来提高这些注释的效率并减少人力。我们提出了一种高通量表型系统,其具有图形用户界面(GUI)和一种新颖的交互式分割算法:语义引导交互式对象分割(SGIOS)。通过提供用户友好的界面和智能注释辅助,该系统有潜力简化和加速训练集的生成,减少用户所需的工作量。我们的评估表明,与用于交互式分割的现有模型相比,我们提出的SGIOS模型所需的用户输入更少。作为GUI应用于植物遗传发现的案例研究,我们展示了一个对杨树再生进行初步全基因组关联研究(GWAS)的结果示例。我们进一步证明,将语义先验图与SGIOS结合,可以使用从杨树再生GWAS中提取的数据集样本,加速未来GWAS的训练过程。我们表型系统的能力超越了无辅助的人类,能够快速准确地表征我们感兴趣的性状。该系统的可扩展性能够实现大规模的表型组学筛选,否则这将因时间限制而无法进行,从而为GWAS、突变体筛选以及其他依赖大样本量来表征性状变异遗传基础的研究提供更强的能力。我们用户友好的系统可供缺乏计算背景的研究人员使用,从而有助于使深度分割作为植物表型工具的使用更加普及。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f362/9394117/8a61d7fecc20/PLANTPHENOMICS2022-9893639.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验