Suppr超能文献

一种深度学习方法,用于在低场磁共振引导放疗中生成肺部病例的合成 CT。

A deep learning approach to generate synthetic CT in low field MR-guided radiotherapy for lung cases.

机构信息

Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, Rome, Italy.

Fondazione Policlinico Universitario ''Agostino Gemelli'' IRCCS, Rome, Italy; Mater Olbia Hospital, Olbia (SS), Italy.

出版信息

Radiother Oncol. 2022 Nov;176:31-38. doi: 10.1016/j.radonc.2022.08.028. Epub 2022 Sep 5.

Abstract

INTRODUCTION

This study aims to apply a conditional Generative Adversarial Network (cGAN) to generate synthetic Computed Tomography (sCT) from 0.35 Tesla Magnetic Resonance (MR) images of the thorax.

METHODS

Sixty patients treated for lung lesions were enrolled and divided into training (32), validation (8), internal (10,T) and external (10,T) test set. Image accuracy of generated sCT was evaluated computing the mean absolute (MAE) and mean error (ME) with respect the original CT. Three treatment plans were calculated for each patient considering MRI as reference image: original CT, sCT (pure sCT) and sCT with GTV density override (hybrid sCT) were used as Electron Density (ED) map. Dose accuracy was evaluated comparing treatment plans in terms of gamma analysis and Dose Volume Histogram (DVH) parameters.

RESULTS

No significant difference was observed between the test sets for image and dose accuracy parameters. Considering the whole test cohort, a MAE of 54.9 ± 10.5 HU and a ME of 4.4 ± 7.4 HU was obtained. Mean gamma passing rates for 2%/2mm, and 3%/3mm tolerance criteria were 95.5 ± 5.9% and 98.2 ± 4.1% for pure sCT, 96.1 ± 5.1% and 98.5 ± 3.9% for hybrid sCT: the difference between the two approaches was significant (p = 0.01). As regards DVH analysis, differences in target parameters estimation were found to be within 5% using hybrid approach and 20% using pure sCT.

CONCLUSION

The DL algorithm here presented can generate sCT images in the thorax with good image and dose accuracy, especially when the hybrid approach is used. The algorithm does not suffer from inter-scanner variability, making feasible the implementation of MR-only workflows for palliative treatments.

摘要

简介

本研究旨在应用条件生成对抗网络(cGAN)从 0.35 特斯拉磁共振(MR)胸部图像生成合成计算机断层扫描(sCT)。

方法

共纳入 60 例接受肺部病变治疗的患者,分为训练组(32 例)、验证组(8 例)、内部测试组(10 例,T 组)和外部测试组(10 例,T 组)。通过计算相对于原始 CT 的平均绝对误差(MAE)和平均误差(ME)来评估生成的 sCT 的图像准确性。对于每个患者,考虑到 MRI 作为参考图像,计算了三种治疗计划:原始 CT、纯 sCT(纯 sCT)和 GTV 密度覆盖的 sCT(混合 sCT)被用作电子密度(ED)图。通过伽马分析和剂量体积直方图(DVH)参数比较治疗计划评估剂量准确性。

结果

在图像和剂量准确性参数方面,测试集之间没有观察到显著差异。对于整个测试队列,获得了 54.9±10.5 HU 的 MAE 和 4.4±7.4 HU 的 ME。2%/2mm 和 3%/3mm 容限标准的平均伽马通过率分别为 95.5±5.9%和 98.2±4.1%的纯 sCT,96.1±5.1%和 98.5±3.9%的混合 sCT:两种方法之间的差异具有统计学意义(p=0.01)。关于 DVH 分析,使用混合方法估计目标参数的差异在 5%以内,而使用纯 sCT 的差异在 20%以内。

结论

本文提出的 DL 算法可以在胸部生成具有良好图像和剂量准确性的 sCT 图像,尤其是使用混合方法时。该算法不受扫描仪间变异性的影响,使得仅使用 MR 进行姑息性治疗的工作流程成为可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验