Nunes Cláudio M, Doddipatla Srinivas, Loureiro Gonçalo F, Roque José P L, Pereira Nelson A M, Pinho E Melo Teresa M V D, Fausto Rui
University of Coimbra, CQC-IMS Department of Chemistry, 3004-535, Coimbra, Portugal.
Chemistry. 2022 Dec 1;28(67):e202202306. doi: 10.1002/chem.202202306. Epub 2022 Oct 13.
Quantum mechanical tunneling of heavy-atoms and vibrational excitation chemistry are unconventional and scarcely explored types of reactivity. Once fully understood, they might bring new avenues to conduct chemical transformations, providing access to a new world of molecules or ways of exquisite reaction control. In this context, we present here the discovery of two isomeric benzazirines exhibiting differential tunneling-driven and vibrationally-induced reactivity, which constitute exceptional results for probing into the nature of these phenomena. The isomeric 6-fluoro- and 2-fluoro-4-hydroxy-2H-benzazirines (3-a and 3'-s) were generated in cryogenic krypton matrices by visible-light irradiation of the corresponding triplet nitrene 2-a, which was produced by UV-light irradiation of its azide precursor. The 3'-s was found to be stable under matrix dark conditions, whereas 3-a spontaneously rearranges (τ ∼64 h at 10 and 20 K) by heavy-atom tunneling to 2-a. Near-IR-light irradiation at the first OH stretching overtone frequencies (remote vibrational antenna) of the benzazirines induces the 3'-s ring-expansion reaction to a seven-member cyclic ketenimine, but the 3-a undergoes 2H-azirine ring-opening reaction to triplet nitrene 2-a. Computations demonstrate that 3-a and 3'-s have distinct reaction energy profiles, which explain the different experimental results. The spectroscopic direct measurement of the tunneling of 3-a to 2-a constitutes a unique example of an observation of a species reacting only by nitrogen tunneling. Moreover, the vibrationally-induced sole activation of the most favorable bond-breaking/bond-forming pathway available for 3-a and 3'-s provides pioneer results regarding the selective nature of such processes.
重原子的量子力学隧穿和振动激发化学是非常规且鲜有探索的反应类型。一旦被充分理解,它们可能会带来进行化学转化的新途径,从而通向一个新的分子世界或实现精确反应控制的方式。在此背景下,我们在此展示了两种异构苯并氮杂环丙烷的发现,它们表现出不同的隧穿驱动和振动诱导反应性,这对于探究这些现象的本质而言是异常的结果。通过对相应的三重态氮烯2 - a进行可见光照射,在低温氪基质中生成了异构的6 - 氟 - 和2 - 氟 - 4 - 羟基 - 2H - 苯并氮杂环丙烷(3 - a和3'- s),而三重态氮烯2 - a是通过对其叠氮化物前体进行紫外光照射产生的。发现3'- s在基质黑暗条件下是稳定的,而3 - a通过重原子隧穿自发重排(在10 K和20 K下τ ∼64 h)为2 - a。在苯并氮杂环丙烷的第一个OH伸缩倍频(远程振动天线)处进行近红外光照射会诱导3'- s发生环扩展反应生成七元环烯酮亚胺,但3 - a会发生2H - 氮杂环丙烷开环反应生成三重态氮烯2 - a。计算表明3 - a和3'- s具有不同的反应能量分布,这解释了不同的实验结果。对3 - a到2 - a的隧穿进行光谱直接测量构成了仅通过氮隧穿反应的物种观测的独特示例。此外,3 - a和3'- s可利用的最有利的断键/成键途径的振动诱导单一活化提供了关于此类过程选择性本质的开创性结果。