Ziatdinov Maxim, Liu Yongtao, Kelley Kyle, Vasudevan Rama, Kalinin Sergei V
Department of Materials Sciences and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States.
ACS Nano. 2022 Sep 27;16(9):13492-13512. doi: 10.1021/acsnano.2c05303. Epub 2022 Sep 6.
Recent progress in machine learning methods and the emerging availability of programmable interfaces for scanning probe microscopes (SPMs) have propelled automated and autonomous microscopies to the forefront of attention of the scientific community. However, enabling automated microscopy requires the development of task-specific machine learning methods, understanding the interplay between physics discovery and machine learning, and fully defined discovery workflows. This, in turn, requires balancing the physical intuition and prior knowledge of the domain scientist with rewards that define experimental goals and machine learning algorithms that can translate these to specific experimental protocols. Here, we discuss the basic principles of Bayesian active learning and illustrate its applications for SPM. We progress from the Gaussian process as a simple data-driven method and Bayesian inference for physical models as an extension of physics-based functional fits to more complex deep kernel learning methods, structured Gaussian processes, and hypothesis learning. These frameworks allow for the use of prior data, the discovery of specific functionalities as encoded in spectral data, and exploration of physical laws manifesting during the experiment. The discussed framework can be universally applied to all techniques combining imaging and spectroscopy, SPM methods, nanoindentation, electron microscopy and spectroscopy, and chemical imaging methods and can be particularly impactful for destructive or irreversible measurements.
机器学习方法的最新进展以及扫描探针显微镜(SPM)可编程接口的出现,推动了自动化和自主显微镜技术成为科学界关注的焦点。然而,实现自动化显微镜技术需要开发特定任务的机器学习方法,理解物理发现与机器学习之间的相互作用,并制定完整的发现工作流程。反过来,这需要在领域科学家的物理直觉和先验知识与定义实验目标的奖励以及能够将这些目标转化为特定实验方案的机器学习算法之间取得平衡。在此,我们讨论贝叶斯主动学习的基本原理,并说明其在扫描探针显微镜中的应用。我们从作为简单数据驱动方法的高斯过程以及作为基于物理的函数拟合扩展的物理模型贝叶斯推断,发展到更复杂的深度核学习方法、结构化高斯过程和假设学习。这些框架允许使用先验数据,发现光谱数据中编码的特定功能,并探索实验过程中体现的物理规律。所讨论的框架可普遍应用于所有结合成像和光谱学的技术、扫描探针显微镜方法、纳米压痕、电子显微镜和光谱学以及化学成像方法,并且对于破坏性或不可逆测量可能具有特别重要的意义。