Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
Chemphyschem. 2022 Nov 18;23(22):e202200428. doi: 10.1002/cphc.202200428. Epub 2022 Sep 7.
Alkali metal borohydrides are promising candidates for large-scale hydrogen storage. They react spontaneously with water, generating dihydrogen and metaborate salts. While sodium borohydride is the most studied, potassium has the best chance of commercial application. Here we examine the physical and chemical properties of such self-hydrolysis solutions. We do this by following the hydrogen evolution, the pH changes, and monitoring the reaction intermediates using NMR. Most studies on such systems are done using dilute solutions, but real-life applications require high concentrations. We show that increasing the borohydride concentration radically changes the system's microstructure and rheology. The changes are seen already at concentrations as low as 5 w/w%, and are critical above 10 w/w%. While dilute solutions are Newtonian, concentrated reaction solutions display non-Newtonian behaviour, that we attribute to the formation and (dis)entanglement of metaborate oligomers. The implications of these findings towards using borohydride salts for hydrogen storage are discussed.
碱金属硼氢化物是大规模储氢的有前途的候选材料。它们与水自发反应,生成氢气和偏硼酸盐盐。虽然硼氢化钠是研究最多的,但钾最有商业应用的机会。在这里,我们研究了这种自水解溶液的物理和化学性质。我们通过跟踪氢气的产生、pH 值的变化以及使用 NMR 监测反应中间体来实现这一点。此类系统的大多数研究都是在稀溶液中进行的,但实际应用需要高浓度。我们表明,增加硼氢化物浓度会从根本上改变系统的微观结构和流变学性质。在浓度低至 5 w/w%时就可以看到这些变化,而在浓度高于 10 w/w%时则是关键。虽然稀溶液是牛顿流体,但浓反应溶液表现出非牛顿行为,我们将其归因于偏硼酸盐低聚物的形成和(解)缠结。讨论了这些发现对硼氢化物盐用于储氢的意义。