Suppr超能文献

慢工出细活:慢特征分析调查

Slow Down to Go Better: A Survey on Slow Feature Analysis.

作者信息

Song Pengyu, Zhao Chunhui

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Mar;35(3):3416-3436. doi: 10.1109/TNNLS.2022.3201621. Epub 2024 Feb 29.

Abstract

Temporal data contain a wealth of valuable information, playing an essential role in various machine-learning tasks. Slow feature analysis (SFA), one of the most classic temporal feature extraction models, has been deeply explored in two decades of development. SFA extracts slowly varying features as high-level representations of temporal data. Its core idea of "slow" has been proven to be consistent with the nature of biological vision and beneficial in capturing significant temporal information for various tasks. So far, SFA has evolved into numerous improved versions and is widely applied in many fields such as computer vision, industrial control, remote sensing, signal processing, and computational biology. However, there currently lacks an insightful review of SFA. In this article, a comprehensive overview of SFA and its extensions is provided for the first time. The formulation and optimization of SFA are introduced. Two mainstream solutions, geometric interpretation, and a gradient-based training method of SFA are presented and discussed. Following that, a taxonomy of the current progress of SFA is proposed. We classify improved versions of SFA into six categories, including dual-input SFA (DISFA), online slow feature analysis (OSFA), probabilistic SFA (PSFA), multimode SFA, nonlinear SFA, and discrete labeled SFA. For each category, we illustrate its main ideas, mathematical principles, and applicable scenarios. In addition, the practical applications of SFA are summarized and presented. Finally, we bring new insights into SFA according to its research status and provide potential research directions, which may serve as a good reference for promoting future work.

摘要

时态数据包含丰富的有价值信息,在各种机器学习任务中发挥着重要作用。慢特征分析(SFA)作为最经典的时态特征提取模型之一,在二十年的发展中得到了深入探索。SFA提取缓慢变化的特征作为时态数据的高级表示。其“慢”的核心思想已被证明与生物视觉的本质一致,并且有利于为各种任务捕获重要的时态信息。到目前为止,SFA已经演变成众多改进版本,并广泛应用于计算机视觉、工业控制、遥感、信号处理和计算生物学等许多领域。然而,目前缺乏对SFA的深入综述。本文首次对SFA及其扩展进行了全面概述。介绍了SFA的公式和优化。提出并讨论了SFA的两种主流解决方案,即几何解释和基于梯度的训练方法。在此之后,提出了SFA当前进展的分类法。我们将SFA的改进版本分为六类,包括双输入SFA(DISFA)、在线慢特征分析(OSFA)、概率SFA(PSFA)、多模式SFA、非线性SFA和离散标记SFA。对于每一类,我们阐述了其主要思想、数学原理和适用场景。此外,总结并展示了SFA的实际应用。最后,根据其研究现状为SFA带来新的见解,并提供潜在的研究方向,这可能为推动未来工作提供很好的参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验