Suppr超能文献

用于硅光子学的硅电化学纳米压印中的粗糙度抑制

Roughness Suppression in Electrochemical Nanoimprinting of Si for Applications in Silicon Photonics.

作者信息

Sharstniou Aliaksandr, Niauzorau Stanislau, Hardison Anna L, Puckett Matthew, Krueger Neil, Ryckman Judson D, Azeredo Bruno

机构信息

Arizona State University, School of Manufacturing Systems and Networks, 6075 S. Innovation Way West, Mesa, AZ, 85212, USA.

Clemson University, Holcombe Department of Electrical and Computer Engineering, 91 Technology Drive, Anderson, SC, 29625, USA.

出版信息

Adv Mater. 2022 Oct;34(43):e2206608. doi: 10.1002/adma.202206608. Epub 2022 Sep 27.

Abstract

Metal-assisted electrochemical nanoimprinting (Mac-Imprint) scales the fabrication of micro- and nanoscale 3D freeform geometries in silicon and holds the promise to enable novel chip-scale optics operating at the near-infrared spectrum. However, Mac-Imprint of silicon concomitantly generates mesoscale roughness (e.g., protrusion size ≈45 nm) creating prohibitive levels of light scattering. This arises from the requirement to coat stamps with nanoporous gold catalyst that, while sustaining etchant diffusion, imprints its pores (e.g., average diameter ≈42 nm) onto silicon. In this work, roughness is reduced to sub-10 nm levels, which is in par with plasma etching, by decreasing pore size of the catalyst via dealloying in far-from equilibrium conditions. At this level, single-digit nanometric details such as grain-boundary grooves of the catalyst are imprinted and attributed to the resolution limit of Mac-Imprint, which is argued to be twice the Debye length (i.e., 1.7 nm)-a finding that broadly applies to metal-assisted chemical etching. Last, Mac-Imprint is employed to produce single-mode rib-waveguides on pre-patterned silicon-on-insulator wafers with root-mean-square line-edge roughness less than 10 nm while providing depth uniformity (i.e., 42.9 ± 5.5 nm), and limited levels of silicon defect formation (e.g., Raman peak shift < 0.1 cm ) and sidewall scattering.

摘要

金属辅助电化学纳米压印(Mac-Imprint)技术可实现硅中微米级和纳米级三维自由形状的制造,并有望实现工作在近红外光谱的新型芯片级光学器件。然而,硅的Mac-Imprint技术会同时产生中尺度粗糙度(例如,凸起尺寸约为45纳米),从而产生高得令人望而却步的光散射水平。这是由于需要用纳米多孔金催化剂涂覆压模,这种催化剂在维持蚀刻剂扩散的同时,会将其孔隙(例如,平均直径约为42纳米)压印到硅上。在这项工作中,通过在远离平衡条件下进行脱合金化来减小催化剂的孔径,粗糙度降低到了10纳米以下,这与等离子体蚀刻相当。在这个水平上,诸如催化剂的晶界沟槽等个位数纳米级细节被压印下来,并被归因于Mac-Imprint的分辨率极限,据认为该极限是德拜长度(即1.7纳米)的两倍——这一发现广泛适用于金属辅助化学蚀刻。最后,Mac-Imprint技术被用于在预先图案化的绝缘体上硅晶圆上制造单模肋形波导,其均方根线边缘粗糙度小于10纳米,同时提供深度均匀性(即42.9±5.5纳米),以及有限水平的硅缺陷形成(例如,拉曼峰位移<0.1厘米)和侧壁散射。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验