Suppr超能文献

电火花加工中原子扩散增材制造电极性能的评估

Evaluation of the Performance of Atomic Diffusion Additive Manufacturing Electrodes in Electrical Discharge Machining.

作者信息

Bordón Pablo, Paz Rubén, Monzón Mario D

机构信息

Mechanical Engineering Department, Universidad de Las Palmas de Gran Canaria, Edificio de Ingenierías, Campus de Tafira Baja, 35017 Las Palmas, Spain.

出版信息

Materials (Basel). 2022 Aug 28;15(17):5953. doi: 10.3390/ma15175953.

Abstract

Atomic Diffusion Additive Manufacturing (ADAM) is an innovative Additive Manufacturing process that allows the manufacture of complex parts in metallic material, such as copper among others, which provides new opportunities in Rapid Tooling. This work presents the development of a copper electrode manufactured with ADAM technology for Electrical Discharge Machining (EDM) and its performance compared to a conventional electrolytic copper. Density, electrical conductivity and energy-dispersive X-ray spectroscopy were performed for an initial analysis of both ADAM and electrolytic electrodes. Previously designed EDM experiments and optimizations using genetic algorithms were carried out to establish a comparative framework for both electrodes. Subsequently, the final EDM tests were carried out to evaluate the electrode wear rate, the roughness of the workpiece and the rate of material removal for both electrodes. The EDM results show that ADAM technology enables the manufacturing of functional EDM electrodes with similar material removal rates and rough workpiece finishes to conventional electrodes, but with greater electrode wear, mainly due to internal porosity, voids and other defects observed with field emission scanning electron microscopy.

摘要

原子扩散增材制造(ADAM)是一种创新的增材制造工艺,可用于制造金属材料(如铜等)的复杂零件,这为快速模具制造提供了新机遇。本文介绍了采用ADAM技术制造的用于电火花加工(EDM)的铜电极的开发情况,并将其性能与传统电解铜电极进行了比较。对ADAM电极和电解电极进行了密度、电导率和能量色散X射线光谱分析,作为初步分析。利用遗传算法进行了先前设计的电火花加工实验和优化,以建立两种电极的比较框架。随后,进行了最终的电火花加工测试,以评估两种电极的电极磨损率、工件粗糙度和材料去除率。电火花加工结果表明,ADAM技术能够制造出功能型电火花加工电极,其材料去除率和工件表面粗糙度与传统电极相似,但电极磨损更大,这主要是由于场发射扫描电子显微镜观察到的内部孔隙、空洞和其他缺陷所致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验