Mezzacappa Marc, Alameri Dheyaa, Thomas Brian, Kim Yoosuk, Lei Chi-Hou, Kuljanishvili Irma
Department of Aerospace and Mechanical Engineering, Saint Louis University, St. Louis, MO 63103, USA.
Department of Physics, Saint Louis University, St. Louis, MO 63103, USA.
Nanomaterials (Basel). 2022 Sep 3;12(17):3060. doi: 10.3390/nano12173060.
The mechanical properties of engineered van der Waals (vdW) 2D materials and heterostructures are critically important for their implementation into practical applications. Using a non-destructive Raman spectroscopy approach, this study investigates the strain evolution of single-layer graphene (SLGr) and few-layered boron nitride/graphene (FLBN/SLGr) heterostructures. The prepared 2D materials are synthesized via chemical vapor deposition (CVD) method and then transferred onto flexible polyethylene terephthalate (PET) substrates for subsequent strain measurements. For this study, a custom-built mechanical device-jig is designed and manufactured in-house to be used as an insert for the 3D piezoelectric stage of the Raman system. In situ investigation of the effects of applied strain in graphene detectable via Raman spectral data in characteristic bonds within SLGr and FLBN/SLGr heterostructures is carried out. The in situ strain evolution of the FLBN/SLGr heterostructures is obtained in the range of (0-0.5%) strain. It is found that, under the same strain, SLG exhibits a higher Raman shift in the band as compared with FLBN/SLGr heterostructures. This research leads to a better understanding of strain dissipation in vertical 2D heterostacks, which could help improve the design and engineering of custom interfaces and, subsequently, control lattice structure and electronic properties. Moreover, this study can provide a new systematic approach for precise in situ strain assessment and measurements of other CVD-grown 2D materials and their heterostructures on a large scale for manufacturing a variety of future micro- and nano-scale devices on flexible substrates.
工程范德华(vdW)二维材料及其异质结构的力学性能对于其实际应用至关重要。本研究采用无损拉曼光谱方法,研究了单层石墨烯(SLGr)和少层氮化硼/石墨烯(FLBN/SLGr)异质结构的应变演化。制备的二维材料通过化学气相沉积(CVD)方法合成,然后转移到柔性聚对苯二甲酸乙二醇酯(PET)基板上进行后续应变测量。在本研究中,设计并在内部制造了一个定制的机械设备夹具,用作拉曼系统三维压电平台的插入件。通过SLGr和FLBN/SLGr异质结构中特征键的拉曼光谱数据,对施加应变在石墨烯中产生的影响进行了原位研究。获得了FLBN/SLGr异质结构在(0-0.5%)应变范围内的原位应变演化。结果发现,在相同应变下,与FLBN/SLGr异质结构相比,SLG在波段表现出更高的拉曼位移。这项研究有助于更好地理解垂直二维异质结构中的应变耗散,这有助于改进定制界面的设计和工程,进而控制晶格结构和电子性能。此外,本研究可以提供一种新的系统方法,用于精确原位应变评估以及大规模测量其他CVD生长的二维材料及其异质结构在柔性基板上的应变,以制造各种未来的微纳尺度器件。