School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China.
School of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China.
Sensors (Basel). 2022 Sep 2;22(17):6660. doi: 10.3390/s22176660.
Infrared (IR) band sensors can capture digital images under challenging conditions, such as haze, smoke, and fog, while visible (VIS) band sensors seize abundant texture information. It is desired to fuse IR and VIS images to generate a more informative image. In this paper, a novel multi-scale IR and VIS images fusion algorithm is proposed to integrate information from both the images into the fused image and preserve the color of the VIS image. A content-adaptive gamma correction is first introduced to stretch the IR images by using one of the simplest edge-preserving filters, which alleviates excessive luminance shifts and color distortions in the fused images. New contrast and exposedness measures are then introduced for the stretched IR and VIS images to achieve weight matrices that are more in line with their characteristics. The IR and luminance components of the VIS image in grayscale or RGB space are fused by using the Gaussian and Laplacian pyramids. The RGB components of the VIS image are finally expanded to generate the fused image if necessary. Comparisons experimentally demonstrate the effectiveness of the proposed algorithm to 10 different state-of-the-art fusion algorithms in terms of computational cost and quality of the fused images.
红外(IR)波段传感器可以在具有挑战性的条件下捕获数字图像,例如烟雾、雾和霾,而可见(VIS)波段传感器则可以捕获丰富的纹理信息。人们希望融合 IR 和 VIS 图像以生成更具信息量的图像。在本文中,提出了一种新颖的多尺度 IR 和 VIS 图像融合算法,以将来自两种图像的信息集成到融合图像中,并保留 VIS 图像的颜色。首先引入内容自适应伽马校正,通过使用最简单的边缘保持滤波器之一来拉伸 IR 图像,从而减轻融合图像中过度的亮度偏移和颜色失真。然后为拉伸后的 IR 和 VIS 图像引入新的对比度和暴露度度量,以获得更符合其特性的权重矩阵。使用高斯和拉普拉斯金字塔融合灰度或 RGB 空间中的 VIS 图像的 IR 和亮度分量。如果需要,最后将 VIS 图像的 RGB 分量展开以生成融合图像。实验比较表明,与 10 种不同的最先进的融合算法相比,该算法在计算成本和融合图像质量方面都具有有效性。